High Dimensional Explicit Feature Biased Matrix Factorization Recommendation

Author(s):  
Weibin Sun ◽  
Xianchao Zhang ◽  
Wenxin Liang ◽  
Zengyou He
Author(s):  
Sibylle Hess ◽  
Gianvito Pio ◽  
Michiel Hochstenbach ◽  
Michelangelo Ceci

AbstractMatrix tri-factorization subject to binary constraints is a versatile and powerful framework for the simultaneous clustering of observations and features, also known as biclustering. Applications for biclustering encompass the clustering of high-dimensional data and explorative data mining, where the selection of the most important features is relevant. Unfortunately, due to the lack of suitable methods for the optimization subject to binary constraints, the powerful framework of biclustering is typically constrained to clusterings which partition the set of observations or features. As a result, overlap between clusters cannot be modelled and every item, even outliers in the data, have to be assigned to exactly one cluster. In this paper we propose Broccoli, an optimization scheme for matrix factorization subject to binary constraints, which is based on the theoretically well-founded optimization scheme of proximal stochastic gradient descent. Thereby, we do not impose any restrictions on the obtained clusters. Our experimental evaluation, performed on both synthetic and real-world data, and against 6 competitor algorithms, show reliable and competitive performance, even in presence of a high amount of noise in the data. Moreover, a qualitative analysis of the identified clusters shows that Broccoli may provide meaningful and interpretable clustering structures.


2017 ◽  
Author(s):  
Genevieve L. Stein-O’Brien ◽  
Raman Arora ◽  
Aedin C. Culhane ◽  
Alexander V. Favorov ◽  
Lana X. Garmire ◽  
...  

AbstractOmics data contains signal from the molecular, physical, and kinetic inter- and intra-cellular interactions that control biological systems. Matrix factorization techniques can reveal low-dimensional structure from high-dimensional data that reflect these interactions. These techniques can uncover new biological knowledge from diverse high-throughput omics data in topics ranging from pathway discovery to time course analysis. We review exemplary applications of matrix factorization for systems-level analyses. We discuss appropriate application of these methods, their limitations, and focus on analysis of results to facilitate optimal biological interpretation. The inference of biologically relevant features with matrix factorization enables discovery from high-throughput data beyond the limits of current biological knowledge—answering questions from high-dimensional data that we have not yet thought to ask.


2021 ◽  
pp. 1-12
Author(s):  
Shangju Deng ◽  
Jiwei Qin

Tensors have been explored to share latent user-item relations and have been shown to be effective for recommendation. Tensors suffer from sparsity and cold start problems in real recommendation scenarios; therefore, researchers and engineers usually use matrix factorization to address these issues and improve the performance of recommender systems. In this paper, we propose matrix factorization completed multicontext data for tensor-enhanced algorithm a using matrix factorization combined with a multicontext data method for tensor-enhanced recommendation. To take advantage of existing user-item data, we add the context time and trust to enrich the interactive data via matrix factorization. In addition, Our approach is a high-dimensional tensor framework that further mines the latent relations from the user-item-trust-time tensor to improve recommendation performance. Through extensive experiments on real-world datasets, we demonstrated the superiority of our approach in predicting user preferences. This method is also shown to be able to maintain satisfactory performance even if user-item interactions are sparse.


2013 ◽  
Vol 347-350 ◽  
pp. 2344-2348
Author(s):  
Lin Cheng Jiang ◽  
Wen Tang Tan ◽  
Zhen Wen Wang ◽  
Feng Jing Yin ◽  
Bin Ge ◽  
...  

Feature selection has become the focus of research areas of applications with high dimensional data. Nonnegative matrix factorization (NMF) is a good method for dimensionality reduction but it cant select the optimal feature subset for its a feature extraction method. In this paper, a two-step strategy method based on improved NMF is proposed.The first step is to get the basis of each catagory in the dataset by NMF. Added constrains can guarantee these basises are sparse and mostly distinguish from each other which can contribute to classfication. An auxiliary function is used to prove the algorithm convergent.The classic ReliefF algorithm is used to weight each feature by all the basis vectors and choose the optimal feature subset in the second step.The experimental results revealed that the proposed method can select a representive and relevant feature subset which is effective in improving the performance of the classifier.


2021 ◽  
Author(s):  
Adel Mehrpooya ◽  
Farid Saberi-Movahed ◽  
Najmeh Azizizadeh ◽  
Mohammad Rezaei-Ravari ◽  
Mahdi Eftekhari ◽  
...  

The extraction of predictive features from the complex high-dimensional multi-omic data is neces- sary for decoding and overcoming the therapeutic responses in systems pharmacology. Developing computational methods to reduce high-dimensional space of features in in vitro, in vivo and clin- ical data is essential to discover the evolution and mechanisms of the drug responses and drug resistance. In this paper, we have utilized the Matrix Factorization (MF) as a modality for high dimensionality reduction in systems pharmacology. In this respect, we have proposed three novel feature selection methods using the mathematical conception of a basis. We have applied these techniques as well as three other matrix factorization methods to analyze eight different gene ex- pression datasets to investigate and compare their performance for feature selection. Our results show that these methods are capable of reducing the feature spaces and find predictive features in terms of phenotype determination. The three proposed techniques outperform the other methods used and can extract a 2-gene signature predictive of a Tyrosine Kinase Inhibitor (TKI) treatment response in the Cancer Cell Line Encyclopedia (CCLE).


Sign in / Sign up

Export Citation Format

Share Document