A Hybrid Artificial Neural Network (ANN) Approach to Spatial and Non-spatial Attribute Data Mining: A Case Study Experience

Author(s):  
Subana Shanmuganathan
Author(s):  
Sandip K Lahiri ◽  
Kartik Chandra Ghanta

Four distinct regimes were found existent (namely sliding bed, saltation, heterogeneous suspension and homogeneous suspension) in slurry flow in pipeline depending upon the average velocity of flow. In the literature, few numbers of correlations has been proposed for identification of these regimes in slurry pipelines. Regime identification is important for slurry pipeline design as they are the prerequisite to apply different pressure drop correlation in different regime. However, available correlations fail to predict the regime over a wide range of conditions. Based on a databank of around 800 measurements collected from the open literature, a method has been proposed to identify the regime using artificial neural network (ANN) modeling. The method incorporates hybrid artificial neural network and genetic algorithm technique (ANN-GA) for efficient tuning of ANN meta parameters. Statistical analysis showed that the proposed method has an average misclassification error of 0.03%. A comparison with selected correlations in the literature showed that the developed ANN-GA method noticeably improved prediction of regime over a wide range of operating conditions, physical properties, and pipe diameters.


Author(s):  
Wan n Nazirah Wan Md Adna ◽  
Nofri Yenita Dahlan ◽  
Ismail Musirin

This paper presents a Hybrid Artificial Neural Network (HANN) for chiller system Measurement and Verification (M&V) model development. In this work, hybridization of Evolutionary Programming (EP) and Artificial Neural Network (ANN) are considered in modeling the baseline electrical energy consumption for a chiller system hence quantifying saving. EP with coefficient of correlation (R) objective function is used in optimizing the neural network training process and selecting the optimal values of ANN initial weights and biases. Three inputs that are affecting energy use of the chiller system are selected; 1) operating time, 2) refrigerant tonnage and 3) differential temperature. The output is hourly energy use of building air-conditioning system. The HANN model is simulated with 16 different structures and the results reveal that all HANN structures produce higher prediction performance with R is above 0.977. The best structure with the highest value of R is selected as the baseline model hence is used to determine the saving. The avoided energy calculated from this model is 132944.59 kWh that contributes to 1.38% of saving percentage.


2018 ◽  
Vol 18 (2) ◽  
pp. 184
Author(s):  
Ikrimah Afifah Trivanni

Data mining menjadi topik hangat yang sangat bermanfaat di era saat ini. Sistem Artificial Neural Network (ANN) dan rough set yang merupakan metode data mining dapat digabungkan yang selanjutnya disebut sebagai metode Rough Neural Network (RNN). Siste, roughset dalam RNN berfungsi untuk mereduksi atribut untuk optimalisasi informasi sedangkan ANN berfungsi untuk membentuk jaringan dari kumpulan data reduksi tersebut. Metode ini dapat digunakan di berbagai bidang misalnya bisnis yakni dalam mengidentifikasi kepuasan konsumen. Perlindungan hak maupun kewajiban dalam bisnis adalah hal penting di negara maju, contohnya New York yang telah membentuk Departement of Consumen Affairs (DCA). Ribuan mediasi tercatat telah dilakukan oleh DCA New York sehingga pendekatan struktur terhadap kepuasan konsumen merupakan hal penting dalam meninjau apakah layanan mediasi yang dilakukan telah baik. Oleh karena itu, tujuan penelitian ini adalah mengimplementasikan metode RNN pada suatu dataset komplain konsumen terhadap pelayanan mediasi DCA New York. Hasil penelitian pada proses awal, rough set menunjukkan bahwa atribut yang efektif untuk menghasilkan kepuasan konsumen yang optimal adalah atribut Business State, Complaint Result, Duration of Mediation, dan Complaint Type. Eror yang dihasilkan pada jaringan tiruan kepuasan konsumen (Satisfaction) sebesar 345,828 dengan langkah yang dilalui untuk mencapai model yang mungkin adalah sebanyak 65137 langkah. Model RNN menunjukkan selisih eror yang kecil antara data latih dan data tes, artinya model RNN konsisten dalam memprediksi kepuasan konsumen untuk kedepannya.


Sign in / Sign up

Export Citation Format

Share Document