Wolf Local Thresholding Approach for Liver Image Segmentation in CT Images

Author(s):  
Abdalla Mostafa ◽  
Mohamed Abd Elfattah ◽  
Ahmed Fouad ◽  
Aboul Ella Hassanien ◽  
Hesham Hefny

Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 268
Author(s):  
Yeganeh Jalali ◽  
Mansoor Fateh ◽  
Mohsen Rezvani ◽  
Vahid Abolghasemi ◽  
Mohammad Hossein Anisi

Lung CT image segmentation is a key process in many applications such as lung cancer detection. It is considered a challenging problem due to existing similar image densities in the pulmonary structures, different types of scanners, and scanning protocols. Most of the current semi-automatic segmentation methods rely on human factors therefore it might suffer from lack of accuracy. Another shortcoming of these methods is their high false-positive rate. In recent years, several approaches, based on a deep learning framework, have been effectively applied in medical image segmentation. Among existing deep neural networks, the U-Net has provided great success in this field. In this paper, we propose a deep neural network architecture to perform an automatic lung CT image segmentation process. In the proposed method, several extensive preprocessing techniques are applied to raw CT images. Then, ground truths corresponding to these images are extracted via some morphological operations and manual reforms. Finally, all the prepared images with the corresponding ground truth are fed into a modified U-Net in which the encoder is replaced with a pre-trained ResNet-34 network (referred to as Res BCDU-Net). In the architecture, we employ BConvLSTM (Bidirectional Convolutional Long Short-term Memory)as an advanced integrator module instead of simple traditional concatenators. This is to merge the extracted feature maps of the corresponding contracting path into the previous expansion of the up-convolutional layer. Finally, a densely connected convolutional layer is utilized for the contracting path. The results of our extensive experiments on lung CT images (LIDC-IDRI database) confirm the effectiveness of the proposed method where a dice coefficient index of 97.31% is achieved.



Author(s):  
Sarada Prasad Dakua ◽  
Julien Abi-Nahed


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xuehu Wang ◽  
Zhiling Zhang ◽  
Kunlun Wu ◽  
Xiaoping Yin ◽  
Haifeng Guo

The gray contrast between the liver and other soft tissues is low, and the boundary is not obvious. As a result, it is still a challenging task to accurately segment the liver from CT images. In recent years, methods of machine learning have become a research hotspot in the field of medical image segmentation because they can effectively use the “gold standard” personalized features of the liver from different data. However, machine learning usually requires a large number of data samples to train the model and improve the accuracy of medical image segmentation. This paper proposed a method for liver segmentation based on the Gabor dictionary of sparse image blocks with prior boundaries. This method reduced the number of samples by selecting the test sample set within the initial boundary area of the liver. The Gabor feature was extracted and the query dictionary was created, and the sparse coefficient was calculated to obtain the boundary information of the liver. By optimizing the reconstruction error and filling holes, a smooth liver boundary was obtained. The proposed method was tested on the MICCAI 2007 dataset and ISBI2017 dataset, and five measures were used to evaluate the results. The proposed method was compared with methods for liver segmentation proposed in recent years. The experimental results show that this method can improve the accuracy of liver segmentation and effectively repair the discontinuity and local overlap of segmentation results.



Medical Image Segmentation is the important tool for diagnosing tumor and for planning how to do treatment. The intention of this study is to detect tumor from CT liver images. Initially, liver is segmented from abdomen CT images. Then SVM Classification is included to classify the normal and abnormal liver structure. If it is abnormal then the tumor will be segmented from liver structure. This technique is computed using sensitivity, specificity and accuracy and is providing good result.



PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244416
Author(s):  
Mohamed Abd Elaziz ◽  
Mohammed A. A. Al-qaness ◽  
Esraa Osama Abo Zaid ◽  
Songfeng Lu ◽  
Rehab Ali Ibrahim ◽  
...  

Coronavirus pandemic (COVID-19) has infected more than ten million persons worldwide. Therefore, researchers are trying to address various aspects that may help in diagnosis this pneumonia. Image segmentation is a necessary pr-processing step that implemented in image analysis and classification applications. Therefore, in this study, our goal is to present an efficient image segmentation method for COVID-19 Computed Tomography (CT) images. The proposed image segmentation method depends on improving the density peaks clustering (DPC) using generalized extreme value (GEV) distribution. The DPC is faster than other clustering methods, and it provides more stable results. However, it is difficult to determine the optimal number of clustering centers automatically without visualization. So, GEV is used to determine the suitable threshold value to find the optimal number of clustering centers that lead to improving the segmentation process. The proposed model is applied for a set of twelve COVID-19 CT images. Also, it was compared with traditional k-means and DPC algorithms, and it has better performance using several measures, such as PSNR, SSIM, and Entropy.



Sign in / Sign up

Export Citation Format

Share Document