Climate Change, Agricultural Productivity, and Farmers’ Response in India’s North-East

Author(s):  
Utpal Kumar De
2013 ◽  
Vol 127 ◽  
pp. 97-106 ◽  
Author(s):  
Ashok Mishra ◽  
Christian Siderius ◽  
Kenny Aberson ◽  
Martine van der Ploeg ◽  
Jochen Froebrich

2021 ◽  
Author(s):  
Yimer Mohammed ◽  
Kindie Tesfaye ◽  
Menfese Tadesse ◽  
Fantaw Yimer

Abstract Background: Climate change and variability has been significantly affecting the Ethiopian agricultural production and thereby smallholder farmers livelihoods. The level of vulnerability varied across agro-ecological zones (AEZs). Identification of difference in the level of vulnerability of a system is important in selecting appropriate and effective adaption options to climate change. Therefore, the aim of this study was to analyze the level of vulnerability of agricultural communities to climate change and variability at micro-scale level in five agro-ecological zones (AEZs) of south Wollo, north east highlands of Ethiopia. Data was collected from a representative of 502 sample households from five AEZs through multi stage random sampling methods. Focus group discussion and key informant interviews were also carried out to supplement and substantiate the quantitative data. The indicator based approach was used to empirically calculate vulnerability. Principal Component Analysis (PCA) was applied to give weight for indicators and generate index of vulnerability contributing factors. Results: The results showed that each of the vulnerability contributing factors (exposure, sensitivity and adaptive capacity) varied across the AEZs. M3, SM2 and SM3 are the most exposed AEZs but having a relatively better adaptive capacity whereas M1, M2 and M3 are the most sensitive AEZs with relatively low adaptive capacity to climate variability and change. Overall, SM2 is the most vulnerable AEZ which exhibited high sensitivity and low adaptive capacity followed by M1. Conclusions: The study explored sources and levels of vulnerability to each agro-ecology. Since the study is conducted at micro-scale level, it helps decision makers and development partners to have context-specific understanding of the impact of climate change and variability and design appropriate adaptation measures to address the specific situations.


2017 ◽  
Vol 8 (3) ◽  
pp. 171-182 ◽  
Author(s):  
Bonaventure N. Nwokeoma ◽  
Amadi Kingsley Chinedu

Abstract Climate change discussion has primarily focused on the physical manifestation, mitigation, adaptation and finance issues. However, little attention is given to the social consequences of climate change impact especially its relationship to crime in society. Specifically, little or no research has been focused on its impact on crime, especially in developing societies. This study which examined the impact of climate change and its consequences on crime specifically terrorist activities in the Northeast of Nigeria is an effort to fill this research gap. The study adopted a cross-aged design which involves in depth interview of 200 farmers in four selected states of the zone. The outcome is that climate change awareness in the zone is very low. The climate change events identified are rapid desertification, excessive heat and drought. The consequence is that most farmers lost farmlands and agricultural products to these climate change events. Also most of the farmers who are youths were rendered redundant due to the negative impact of these climate events on crops and agriculture. Consequently they engage in alternative activities like menial jobs, while some engage in criminal activities like drug addiction, theft, political thugery, armed robbery, kidnapping and terrorism. They become ready tools for recruitment by Boko-Haram terrorists who are active in the area. It is recommended that massive enlightenment and effective mitigation program should be conducted, youth who are not in school should be convinced to embrace education. Also measures and projects to re-engage the youths back to agriculture should be promoted.


2021 ◽  
Author(s):  
Katharina Enigl ◽  
Matthias Schlögl ◽  
Christoph Matulla

<p>Climate change constitutes a main driver of altering population dynamics of spruce bark beetles (<em>Ips typographus</em>) all over Europe. Their swarming activity as well as development rate are strongly dependent on temperature and the availability of brood trees. Especially over the last years, the latter has substantially increased due to major drought events which led to a widespread weakening of spruce stands. Since both higher temperatures and longer drought periods are to be expected in Central Europe in the decades ahead, foresters face the challenges of maintaining sustainable forest management and safeguarding future yields. One approach used to foster decision support in silviculture relies on the identification of possible alternative tree species suitable for adapting to expected future climate conditions in threatened regions. </p><p>In this study, we focus on the forest district of Horn, a region in Austria‘s north east that is beneficially influenced by the mesoclimate of the Pannonian basin. This fertile yet dry area has been severely affected by mass propagations of <em>Ips typographus</em> due to extensive droughts since 2017, and consequently has suffered from substantial forest damage in recent years. The urgent need for action was realized and has expedited the search for more robust alternative species to ensure sustainable silviculture in the area.</p><p>The determination of suitable tree species is based on the identification of regions whose climatic conditions in the recent past are similar to those that are to be expected in the forest district of Horn in the future. To characterize these conditions, we consider 19 bioclimatic variables that are derived from monthly temperature and rainfall values. Using downscaled CMIP6 projections with a spatial resolution of 2.5 minutes, we determine future conditions in Horn throughout the 21st century. By employing 20-year periods from 2021 to 2100 for the scenarios SSP1-26, SSP2-45, SSP3-70 and SSP5-85,  and comparing them to worldwide past climate conditions, we obtain corresponding bioclimatic regions for four future time slices until the end of the century. The Euclidian distance is applied as measure of similarity, effectively yielding similarity maps on a continuous scale. In order to account for the spatial variability within the forest district, this procedure is performed for the colder northwest and the warmer southeast of the area, individually seeking similar bioclimatic regions for each of these two subregions. Results point to Eastern Europe as well as the Po Valley in northern Italy as areas exhibiting the highest similarity to the future climate in this North-Eastern part of Austria.</p>


Antiquity ◽  
2018 ◽  
Vol 92 (365) ◽  
pp. 1274-1291 ◽  
Author(s):  
Cristina C. Castillo ◽  
Charles F.W. Higham ◽  
Katie Miller ◽  
Nigel Chang ◽  
Katerina Douka ◽  
...  


2010 ◽  
Vol 129-131 ◽  
pp. 1161-1165
Author(s):  
Lin Chun Hou ◽  
Hui Qin Li

The aim: quantitatively evaluate the response of climate change upon the sustainability of the agricultural production. The method: the paper selected two regions (Hubei and shan’xi province) which represented different climate environment, utilized modern statistic data, Principal Component Analysis and multivariate linear regression to quantitatively evaluate the influence of climate change upon agricultural production through isolating climate environment from arable area, land utilization and management and landform and so on. The conclusion: The study indicated that when environmental condition turned good to agriculture, the function of environmental condition to agriculture relatively decreased; the capability of agricultural society and production decreased too, and people could select the land to cultivate, where agricultural productivity is higher. And that when environmental condition turned bad to agriculture, the function of environmental condition to agriculture relatively increased; the capability of agricultural society and production increased, too; people could not put emphasis on the land where agricultural productivity is higher, whereas focused on productivity per capita.


Sign in / Sign up

Export Citation Format

Share Document