scholarly journals Climate Variability and Consequences for Crime, Insurgency in North East Nigeria

2017 ◽  
Vol 8 (3) ◽  
pp. 171-182 ◽  
Author(s):  
Bonaventure N. Nwokeoma ◽  
Amadi Kingsley Chinedu

Abstract Climate change discussion has primarily focused on the physical manifestation, mitigation, adaptation and finance issues. However, little attention is given to the social consequences of climate change impact especially its relationship to crime in society. Specifically, little or no research has been focused on its impact on crime, especially in developing societies. This study which examined the impact of climate change and its consequences on crime specifically terrorist activities in the Northeast of Nigeria is an effort to fill this research gap. The study adopted a cross-aged design which involves in depth interview of 200 farmers in four selected states of the zone. The outcome is that climate change awareness in the zone is very low. The climate change events identified are rapid desertification, excessive heat and drought. The consequence is that most farmers lost farmlands and agricultural products to these climate change events. Also most of the farmers who are youths were rendered redundant due to the negative impact of these climate events on crops and agriculture. Consequently they engage in alternative activities like menial jobs, while some engage in criminal activities like drug addiction, theft, political thugery, armed robbery, kidnapping and terrorism. They become ready tools for recruitment by Boko-Haram terrorists who are active in the area. It is recommended that massive enlightenment and effective mitigation program should be conducted, youth who are not in school should be convinced to embrace education. Also measures and projects to re-engage the youths back to agriculture should be promoted.

New Medit ◽  
2021 ◽  
Vol 20 (2) ◽  
Author(s):  

"This study was designed to investigate how dairy farmers of AL-Dhulel cooperative Dairy Society (ACDS) perceive climate change, the adaptation strategies adopted by farmers to cope with the impact of climate change and the barriers to the adoption of these strategies. A 92 dairy farmers provided with a questionnaire that was developed to collect the data and covered farmers perception, adaptation strategies, and the barriers facing them towards adopting the strategies. The personal interviews with the farmers were performed during early January, 2020. The data was analyzed using the Statistical Package for Social Sciences (SPSS). The main result obtained from the study that most of dairy farmers were aware of the climate change impact on dairy cattle performance and health. Furthermore, the adaptation strategies that was suggested has limiting factors according to farmers as a result of governmental and agricultural institutions restriction polices. Therefore, recommendations regarding new polices was suggested to facilitate the way of getting benefit from grants and financial support for improving dairy farms and to mitigate the effect of climate change on dairy cattle."


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1153
Author(s):  
Shih-Jung Wang ◽  
Cheng-Haw Lee ◽  
Chen-Feng Yeh ◽  
Yong Fern Choo ◽  
Hung-Wei Tseng

Climate change can directly or indirectly influence groundwater resources. The mechanisms of this influence are complex and not easily quantified. Understanding the effect of climate change on groundwater systems can help governments adopt suitable strategies for water resources. The baseflow concept can be used to relate climate conditions to groundwater systems for assessing the climate change impact on groundwater resources. This study applies the stable baseflow concept to the estimation of the groundwater recharge in ten groundwater regions in Taiwan, under historical and climate scenario conditions. The recharge rates at the main river gauge stations in the groundwater regions were assessed using historical data. Regression equations between rainfall and groundwater recharge quantities were developed for the ten groundwater regions. The assessment results can be used for recharge evaluation in Taiwan. The climate change estimation results show that climate change would increase groundwater recharge by 32.6% or decrease it by 28.9% on average under the climate scenarios, with respect to the baseline quantity in Taiwan. The impact of climate change on groundwater systems may be positive. This study proposes a method for assessing the impact of climate change on groundwater systems. The assessment results provide important information for strategy development in groundwater resources management.


Author(s):  
Isabel Aguilar-Palacio ◽  
Lina Maldonado ◽  
Sara Malo ◽  
Raquel Sánchez-Recio ◽  
Iván Marcos-Campos ◽  
...  

It is essential to understand the impact of social inequalities on the risk of COVID-19 infection in order to mitigate the social consequences of the pandemic. With this aim, the objective of our study was to analyze the effect of socioeconomic inequalities, both at the individual and area of residence levels, on the probability of COVID-19 confirmed infection, and its variations across three pandemic waves. We conducted a retrospective cohort study and included data from all individuals tested for COVID-19 during the three waves of the pandemic, from March to December 2020 (357,989 individuals) in Aragón (Spain). We studied the effect of inequalities on the risk of having a COVID-19 confirmed diagnosis after being tested using multilevel analyses with two levels of aggregation: individuals and basic healthcare area of residence (deprivation level and type of zone). Inequalities in the risk of COVID-19 confirmed infection were observed at both the individual and area level. There was a predominance of low-paid employees living in deprived areas. Workers with low salaries, unemployed and people on minimum integration income or who no longer receive the unemployment allowance, had a higher probability of COVID-19 infection than workers with salaries ≥ €18,000 per year. Inequalities were greater in women and in the second wave. The deprivation level of areas of residence influenced the risk of COVID-19 infection, especially in the second wave. It is necessary to develop individual and area coordinated measures by areas in the control, diagnosis and treatment of the epidemic, in order to avoid an increase in the already existing inequalities.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anna Åkesson ◽  
Alva Curtsdotter ◽  
Anna Eklöf ◽  
Bo Ebenman ◽  
Jon Norberg ◽  
...  

AbstractEco-evolutionary dynamics are essential in shaping the biological response of communities to ongoing climate change. Here we develop a spatially explicit eco-evolutionary framework which features more detailed species interactions, integrating evolution and dispersal. We include species interactions within and between trophic levels, and additionally, we incorporate the feature that species’ interspecific competition might change due to increasing temperatures and affect the impact of climate change on ecological communities. Our modeling framework captures previously reported ecological responses to climate change, and also reveals two key results. First, interactions between trophic levels as well as temperature-dependent competition within a trophic level mitigate the negative impact of climate change on biodiversity, emphasizing the importance of understanding biotic interactions in shaping climate change impact. Second, our trait-based perspective reveals a strong positive relationship between the within-community variation in preferred temperatures and the capacity to respond to climate change. Temperature-dependent competition consistently results both in higher trait variation and more responsive communities to altered climatic conditions. Our study demonstrates the importance of species interactions in an eco-evolutionary setting, further expanding our knowledge of the interplay between ecological and evolutionary processes.


2021 ◽  
Vol 13 (12) ◽  
pp. 2249
Author(s):  
Sadia Alam Shammi ◽  
Qingmin Meng

Climate change and its impact on agriculture are challenging issues regarding food production and food security. Many researchers have been trying to show the direct and indirect impacts of climate change on agriculture using different methods. In this study, we used linear regression models to assess the impact of climate on crop yield spatially and temporally by managing irrigated and non-irrigated crop fields. The climate data used in this study are Tmax (maximum temperature), Tmean (mean temperature), Tmin (minimum temperature), precipitation, and soybean annual yields, at county scale for Mississippi, USA, from 1980 to 2019. We fit a series of linear models that were evaluated based on statistical measurements of adjusted R-square, Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC). According to the statistical model evaluation, the 1980–1992 model Y[Tmax,Tmin,Precipitation]92i (BIC = 120.2) for irrigated zones and the 1993–2002 model Y[Tmax,Tmean,Precipitation]02ni (BIC = 1128.9) for non-irrigated zones showed the best fit for the 10-year period of climatic impacts on crop yields. These models showed about 2 to 7% significant negative impact of Tmax increase on the crop yield for irrigated and non-irrigated regions. Besides, the models for different agricultural districts also explained the changes of Tmax, Tmean, Tmin, and precipitation in the irrigated (adjusted R-square: 13–28%) and non-irrigated zones (adjusted R-square: 8–73%). About 2–10% negative impact of Tmax was estimated across different agricultural districts, whereas about −2 to +17% impacts of precipitation were observed for different districts. The modeling of 40-year periods of the whole state of Mississippi estimated a negative impact of Tmax (about 2.7 to 8.34%) but a positive impact of Tmean (+8.9%) on crop yield during the crop growing season, for both irrigated and non-irrigated regions. Overall, we assessed that crop yields were negatively affected (about 2–8%) by the increase of Tmax during the growing season, for both irrigated and non-irrigated zones. Both positive and negative impacts on crop yields were observed for the increases of Tmean, Tmin, and precipitation, respectively, for irrigated and non-irrigated zones. This study showed the pattern and extent of Tmax, Tmean, Tmin, and precipitation and their impacts on soybean yield at local and regional scales. The methods and the models proposed in this study could be helpful to quantify the climate change impacts on crop yields by considering irrigation conditions for different regions and periods.


2021 ◽  
pp. 104973232110018
Author(s):  
Sarah O’Neill ◽  
Christina Pallitto

The health consequences of female genital mutilation (FGM) have been described previously; however, evidence of the social consequences is more intangible. To date, few systematic reviews have addressed the impact of the practice on psycho-social well-being, and there is limited understanding of what these consequences might consist. To complement knowledge on the known health consequences, this article systematically reviewed qualitative evidence of the psycho-social impact of FGM in countries where it is originally practiced (Africa, the Middle East, and Asia) and in countries of the diaspora. Twenty-three qualitative studies describing the psycho-social impact of FGM on women’s lives were selected after screening. This review provides a framework for understanding the less visible ways in which women and girls with FGM experience adverse effects that may affect their sense of identity, their self-esteem, and well-being as well as their participation in society.


2021 ◽  
Author(s):  
Laura Müller ◽  
Petra Döll

<p>Due to climate change, the water cycle is changing which requires to adapt water management in many regions. The transdisciplinary project KlimaRhön aims at assessing water-related risks and developing adaptation measures in water management in the UNESCO Biosphere Reserve Rhön in Central Germany. One of the challenges is to inform local stakeholders about hydrological hazards in in the biosphere reserve, which has an area of only 2433 km² and for which no regional hydrological simulations are available. To overcome the lack of local simulations of the impact of climate change on water resources, existing simulations by a number of global hydrological models (GHMs) were evaluated for the study area. While the coarse model resolution of 0.5°x0.5° (55 km x 55 km at the equator) is certainly problematic for the small study area, the advantage is that both the uncertainty of climate simulations and hydrological models can be taken into account to provide a best estimate of future hazards and their (large) uncertainties. This is different from most local hydrological climate change impact assessments, where only one hydrological model is used, which leads to an underestimation of future uncertainty as different hydrological models translate climatic changes differently into hydrological changes and, for example, mostly do not take into account the effect of changing atmospheric CO<sub>2</sub> on evapotranspiration and thus runoff.   </p><p>The global climate change impact simulations were performed in a consistent manner by various international modeling groups following a protocol developed by ISIMIP (ISIMIP 2b, www.isimip.org); the simulation results are freely available for download. We processed, analyzed and visualized the results of the multi-model ensemble, which consists of eight GHMs driven by the bias-adjusted output of four general circulation models. The ensemble of potential changes of total runoff and groundwater recharge were calculated for two 30-year future periods relative to a reference period, analyzing annual and seasonal means as well as interannual variability. Moreover, the two representative concentration pathways RCP 2.6 and 8.5 were chosen to inform stakeholders about two possible courses of anthropogenic emissions.</p><p>To communicate the results to local stakeholders effectively, the way to present modeling results and their uncertainty is crucial. The visualization and textual/oral presentation should not be overwhelming but comprehensive, comprehensible and engaging. It should help the stakeholder to understand the likelihood of particular hazards that can be derived from multi-model ensemble projections. In this contribution, we present the communication approach we applied during a stakeholder workshop as well as its evaluation by the stakeholders.</p>


2021 ◽  
Author(s):  
Bekam Bekele Gulti ◽  
Boja Mokonnen Manyazew ◽  
Abdulkerim Bedewi Serur

Abstract Climate change (CC) and land use/cover change (LUCC) are the main drivers of streamflow change. In this paper, we investigate the impact of climate and LULC change impact on stream flow of Guder catchment by using Soil and Water Assessment model (SWAT). The scenarios were designed in a way that LULC was changed while climate conditions remain constant; LULC was then held constant under a changing climate and combined effect of both. The result shows that, the combined impacts of climate change and LULC dynamics can be rather different from the effects that follow-on from LULC or climate change alone. Streamflow would be more sensitive to climate change than to the LULC changes scenario, even though changes in LULC have far-reaching influences on streamflow in the study region. A comprehensive strategy of low impact developments, smart growth, and open space is critical to handle future changes to streamflow systems.


PERSPEKTIF ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 6
Author(s):  
Devita Rani ◽  
Effiati Juliana Hasibuan ◽  
Rehia K. Isabela Barus

<h1>Mobile   Legends   Online   Games:   Bang   Bang   is   one   manifestation   of   technological development in new media. The purpose of this study was to find out how the positive and negative impact of playing Mobile Legends: Bang Bang online games to FISIP UMA students who play games. The theory used in this study is communication, new media, positive and negative online games. The method used is a qualitative method. Where the informants fifth in FISIP UMA students. Data collection techniques are carried out by means of participatory observation, in-depth interviews and documentary evidence. The result of the study show that the impact of playing Mobile Legends is influenced by the attitude of the players, indifferent to the social environment, wasteful in terms of time and economy, can get new friends in cyberspace from other countries so as not to limit interaction, add insight and experience about technology.</h1><h1><strong> </strong></h1><h1> </h1>


2014 ◽  
Vol 11 (5) ◽  
pp. 4579-4638 ◽  
Author(s):  
M. C. Peel ◽  
R. Srikanthan ◽  
T. A. McMahon ◽  
D. J. Karoly

Abstract. Two key sources of uncertainty in projections of future runoff for climate change impact assessments are uncertainty between Global Climate Models (GCMs) and within a GCM. Within-GCM uncertainty is the variability in GCM output that occurs when running a scenario multiple times but each run has slightly different, but equally plausible, initial conditions. The limited number of runs available for each GCM and scenario combination within the Coupled Model Intercomparison Project phase 3 (CMIP3) and phase 5 (CMIP5) datasets, limits the assessment of within-GCM uncertainty. In this second of two companion papers, the primary aim is to approximate within-GCM uncertainty of monthly precipitation and temperature projections and assess its impact on modelled runoff for climate change impact assessments. A secondary aim is to assess the impact of between-GCM uncertainty on modelled runoff. Here we approximate within-GCM uncertainty by developing non-stationary stochastic replicates of GCM monthly precipitation and temperature data. These replicates are input to an off-line hydrologic model to assess the impact of within-GCM uncertainty on projected annual runoff and reservoir yield. To-date within-GCM uncertainty has received little attention in the hydrologic climate change impact literature and this analysis provides an approximation of the uncertainty in projected runoff, and reservoir yield, due to within- and between-GCM uncertainty of precipitation and temperature projections. In the companion paper, McMahon et al. (2014) sought to reduce between-GCM uncertainty by removing poorly performing GCMs, resulting in a selection of five better performing GCMs from CMIP3 for use in this paper. Here we present within- and between-GCM uncertainty results in mean annual precipitation (MAP), temperature (MAT) and runoff (MAR), the standard deviation of annual precipitation (SDP) and runoff (SDR) and reservoir yield for five CMIP3 GCMs at 17 world-wide catchments. Based on 100 stochastic replicates of each GCM run at each catchment, within-GCM uncertainty was assessed in relative form as the standard deviation expressed as a percentage of the mean of the 100 replicate values of each variable. The average relative within-GCM uncertainty from the 17 catchments and 5 GCMs for 2015–2044 (A1B) were: MAP 4.2%, SDP 14.2%, MAT 0.7%, MAR 10.1% and SDR 17.6%. The Gould–Dincer Gamma procedure was applied to each annual runoff time-series for hypothetical reservoir capacities of 1× MAR and 3× MAR and the average uncertainty in reservoir yield due to within-GCM uncertainty from the 17 catchments and 5 GCMs were: 25.1% (1× MAR) and 11.9% (3× MAR). Our approximation of within-GCM uncertainty is expected to be an underestimate due to not replicating the GCM trend. However, our results indicate that within-GCM uncertainty is important when interpreting climate change impact assessments. Approximately 95% of values of MAP, SDP, MAT, MAR, SDR and reservoir yield from 1× MAR or 3× MAR capacity reservoirs are expected to fall within twice their respective relative uncertainty (standard deviation/mean). Within-GCM uncertainty has significant implications for interpreting climate change impact assessments that report future changes within our range of uncertainty for a given variable – these projected changes may be due solely to within-GCM uncertainty. Since within-GCM variability is amplified from precipitation to runoff and then to reservoir yield, climate change impact assessments that do not take into account within-GCM uncertainty risk providing water resources management decision makers with a sense of certainty that is unjustified.


Sign in / Sign up

Export Citation Format

Share Document