Supercomputing, Exascale Computing, High Performance Computing

2020 ◽  
pp. 1-3
Author(s):  
Anamaria Berea
2021 ◽  
Vol 13 (21) ◽  
pp. 11782
Author(s):  
Taha Al-Jody ◽  
Hamza Aagela ◽  
Violeta Holmes

There is a tradition at our university for teaching and research in High Performance Computing (HPC) systems engineering. With exascale computing on the horizon and a shortage of HPC talent, there is a need for new specialists to secure the future of research computing. Whilst many institutions provide research computing training for users within their particular domain, few offer HPC engineering and infrastructure-related courses, making it difficult for students to acquire these skills. This paper outlines how and why we are training students in HPC systems engineering, including the technologies used in delivering this goal. We demonstrate the potential for a multi-tenant HPC system for education and research, using novel container and cloud-based architecture. This work is supported by our previously published work that uses the latest open-source technologies to create sustainable, fast and flexible turn-key HPC environments with secure access via an HPC portal. The proposed multi-tenant HPC resources can be deployed on a “bare metal” infrastructure or in the cloud. An evaluation of our activities over the last five years is given in terms of recruitment metrics, skills audit feedback from students, and research outputs enabled by the multi-tenant usage of the resource.


2019 ◽  
Vol 9 ◽  
Author(s):  
Tanmoy Bhattacharya ◽  
Thomas Brettin ◽  
James H. Doroshow ◽  
Yvonne A. Evrard ◽  
Emily J. Greenspan ◽  
...  

MRS Bulletin ◽  
1997 ◽  
Vol 22 (10) ◽  
pp. 5-6
Author(s):  
Horst D. Simon

Recent events in the high-performance computing industry have concerned scientists and the general public regarding a crisis or a lack of leadership in the field. That concern is understandable considering the industry's history from 1993 to 1996. Cray Research, the historic leader in supercomputing technology, was unable to survive financially as an independent company and was acquired by Silicon Graphics. Two ambitious new companies that introduced new technologies in the late 1980s and early 1990s—Thinking Machines and Kendall Square Research—were commercial failures and went out of business. And Intel, which introduced its Paragon supercomputer in 1994, discontinued production only two years later.During the same time frame, scientists who had finished the laborious task of writing scientific codes to run on vector parallel supercomputers learned that those codes would have to be rewritten if they were to run on the next-generation, highly parallel architecture. Scientists who are not yet involved in high-performance computing are understandably hesitant about committing their time and energy to such an apparently unstable enterprise.However, beneath the commercial chaos of the last several years, a technological revolution has been occurring. The good news is that the revolution is over, leading to five to ten years of predictable stability, steady improvements in system performance, and increased productivity for scientific applications. It is time for scientists who were sitting on the fence to jump in and reap the benefits of the new technology.


2001 ◽  
Author(s):  
Donald J. Fabozzi ◽  
Barney II ◽  
Fugler Blaise ◽  
Koligman Joe ◽  
Jackett Mike ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document