Case Study 2.4: Machining of Aircraft Turbine Support Structures

Author(s):  
Oscar Gonzalo ◽  
Jose Mari Seara ◽  
Enrique Guruceta ◽  
Mikel Esparta ◽  
Iker Zamakona ◽  
...  
Keyword(s):  
Author(s):  
Oreste S. Bursi ◽  
Fabrizio Paolacci ◽  
Md Shahin Reza

The prevailing lack of proper and uniform seismic design guidelines for piping systems impels designers to follow standards conceived for other structures, such as buildings. The modern performance-based design approach is yet to be widely adopted for piping systems, while the allowable stress design method is still the customary practice. This paper presents a performance-based seismic analysis of petrochemical piping systems coupled with support structures through a case study. We start with a concept of performance-based analysis, followed by establishing a link between limit states and earthquake levels, exemplifying Eurocode and Italian prescriptions. A brief critical review on seismic design criteria of piping, including interactions between piping and support, is offered thereafter. Finally, to illustrate actual applications of the performance-based analysis, non-linear analyses on a realistic petrochemical piping system is performed to assess its seismic performance.


2020 ◽  
Vol 10 (15) ◽  
pp. 5182
Author(s):  
Daoping Liu ◽  
Dingli Zhang ◽  
Qian Fang ◽  
Zhenyu Sun ◽  
Jiwei Luo ◽  
...  

A super-span tunnel that has the characteristics of a large excavation area, a small high-span ratio and a significant spatial effect exhibits a complex mechanical response during the excavation process. In this paper, taking the Badaling Great Wall station in Beijing, China as the engineering background, a case study of field monitoring a super-span tunnel has been presented. A typical monitoring section was selected in the super-span transition section of the tunnel and the deformation and forces of both the surrounding rock and the support structures were systematically monitored. The dynamic evolution and the spatial distribution characteristics of the monitoring data, including the internal displacement of the surrounding rock, the tunnel displacement, the contact pressure between the surrounding rock and the primary supports, the contact pressure between the primary and secondary supports, the axial forces in the bolts and cables, the internal forces in both the steel arches and the secondary supports and the internal stresses of the surrounding rock, were analyzed. The results of the monitoring and the analyses have shown that the deformation and the forces acting on both the surrounding rock and the tunnel’s lining are directly related to the construction procedures, the geological conditions and the locations in the super-span tunnel. According to the results, a few suggestions to improve the construction of the tunnel have been proposed.


2020 ◽  
Vol 40 (5) ◽  
pp. 665-673
Author(s):  
Yanhui Sun ◽  
Junkang Guo ◽  
Jun Hong ◽  
Guanghui Liu

Purpose This paper aims to develop a theoretical method to analyze the rotation accuracy of rotating machinery with multi-support structures. The method effectively considers the geometric errors and assembly deformation of parts. Design/methodology/approach A method composed of matrix and FEA methods is proposed to do the analysis. The deviation propagation analysis results and external loads are set as boundary conditions of the model which is built with Timoshenko beam elements to calculate the spatial pose of the rotor. The calculation is performed repeatedly as the rotation angle increased to get the rotation trajectories of concerned nodes, and further evaluation is done to get the rotation accuracy. Additionally, to get more reliable results, the bearing motion errors and stiffness are analyzed by a static model considering manufacturing errors of parts. Findings The feasibility of the proposed method is verified through a case study of a high-precision spindle. The method reasonably predicts the rotation accuracy of the spindle. Originality/value For rotating machinery with multi-support structures, the paper proposes a modeling method to predict the rotation accuracy, simultaneously considering geometric errors and assembly deformation of parts. This would improve the accuracy of tolerance analysis.


2021 ◽  
Author(s):  
Lucas Morand ◽  
Joshua D. Summers ◽  
Garrett J. Pataky

Abstract The support structures required in many forms of additive manufacturing are often seen as waste that is tolerated as necessary. In metal additive processes, cost is frequently reduced by minimizing the amount of support structures needed to produce a part so that in turn, material use is decreased. However, there still exists the challenge of generating parts that are not deformed by the stresses created in the process. In this case study, support structures were leveraged to address deformation. A part was printed via direct metal laser melting with supports with a high grouping density in areas of high anticipated deformation in order to stiffen the part to prevent deformation. Then, they were printed again with a low grouping density to allow the part to relax and reduce stress. Combinations of support strategy and leaving supports on during post processing were used to investigate the effects of keeping or removing the supports in post-print operations such as surface treatment. The two optimized support strategies saw a lower deformation than the baseline approach to supports, and the releasing strategy was closest to the reference solid model with a 26% reduction in average deformation. The results suggest that the support structures in additively manufactured parts have a different impact on the part than the original intent of the supports to simply alleviate a process requirement. The support structures should be used to impact the final part geometry.


JOM ◽  
2021 ◽  
Author(s):  
K. Bartsch ◽  
C. Emmelmann

AbstractSupport structures are essential to laser powder bed fusion (PBF-LB/M). They sustain overhangs, prevent distortion, and dissipate process-induced heat. Their removal after manufacturing is required, though, increasing the overall costs. Therefore, optimization is important to increase the economic efficiency of PBF-LB/M. To enable optimization focused on the support structures’ costs, a cost model is developed. The whole production process, including the design, manufacturing, and post-processing of a part, is considered by deriving formulas for the individual costs. The cost model is applied to a previously developed benchmark procedure. Additionally, a case study investigating different support layout strategies is conducted.


2014 ◽  
Vol 38 (01) ◽  
pp. 102-129
Author(s):  
ALBERTO MARTÍN ÁLVAREZ ◽  
EUDALD CORTINA ORERO

AbstractUsing interviews with former militants and previously unpublished documents, this article traces the genesis and internal dynamics of the Ejército Revolucionario del Pueblo (People's Revolutionary Army, ERP) in El Salvador during the early years of its existence (1970–6). This period was marked by the inability of the ERP to maintain internal coherence or any consensus on revolutionary strategy, which led to a series of splits and internal fights over control of the organisation. The evidence marshalled in this case study sheds new light on the origins of the armed Salvadorean Left and thus contributes to a wider understanding of the processes of formation and internal dynamics of armed left-wing groups that emerged from the 1960s onwards in Latin America.


2020 ◽  
Vol 43 ◽  
Author(s):  
Michael Lifshitz ◽  
T. M. Luhrmann

Abstract Culture shapes our basic sensory experience of the world. This is particularly striking in the study of religion and psychosis, where we and others have shown that cultural context determines both the structure and content of hallucination-like events. The cultural shaping of hallucinations may provide a rich case-study for linking cultural learning with emerging prediction-based models of perception.


Sign in / Sign up

Export Citation Format

Share Document