Precipitate Formation and Grain Refinement of MG-AL-SN Alloy during Hot Deformation

2012 ◽  
pp. 549-554
Author(s):  
Abu Syed Humaun Kabir ◽  
Jing Su ◽  
Phuong Vo ◽  
In-Ho Jung ◽  
Stephen Yue
Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1978 ◽  
Author(s):  
Xianqiang Fan ◽  
Zhipeng Guo ◽  
Xiaofeng Wang ◽  
Jie Yang ◽  
Jinwen Zou

A pre-hot-deformation process was applied for a polycrystalline nickel-base superalloy to active deformation twins and dislocations, and subsequent slow cooling treatment was used to achieve grain refinement and microstructure homogenization. The microstructural evolution of the alloy was investigated, and the corresponding underlying mechanism was discussed. It was found that twinning mainly occurred in large grains during pre-hot-deformation owing to the stress concentration surrounding the large grains. High density dislocations were found in large grains, and the dislocation density increased approaching the grain boundary. The average grain size was refined from 30 μm to 13 μm after slow cooling with a standard deviation of grain size decreasing from 10.8 to 2.8, indicating a homogeneous microstructure. The grain refinement and microstructure homogenization during cooling process could be achieved via (i) static recrystallization (SRX), (ii) interaction of twin tips and γ’ precipitates, and (iii) grain coarsening hindered by γ’ precipitates in grain boundaries.


2020 ◽  
Vol 815 ◽  
pp. 152382 ◽  
Author(s):  
Guoai He ◽  
Yifan Zhao ◽  
Bin Gan ◽  
Xiaofei Sheng ◽  
Yu Liu ◽  
...  

1996 ◽  
Vol 60 (1-4) ◽  
pp. 575-580 ◽  
Author(s):  
I. Schindler ◽  
J. Machacek ◽  
J. Kliber ◽  
M. Greger ◽  
M. Kursa

2005 ◽  
Vol 488-489 ◽  
pp. 223-226 ◽  
Author(s):  
Xu Yue Yang ◽  
Masayoshi Sanada ◽  
Hiromi Miura ◽  
Taku Sakai

Hot deformation and associated structural changes were studied in compression of a magnesium alloy AZ31 with initial grain sizes (D0) of 22 µm and 90 µm at a temperature of 573K. D0 influences significantly the flow curve and the kinetics of grain refinement during hot deformation. For D0 = 22 µm, grain fragmentation takes place due to frequent formation of kink bands initially at corrugated grain boundaries and then in grain interiors in low strain, followed by full development of new fine grains in high strain. For D0 = 90 µm, in contrast, twinning takes place in coarser original grains, and then kink bands and new fine grains are formed mainly in finer ones at low strains. Then new grains are formed in necklace along the boundaries of coarse original grains, followed by their development into the grain interiors. Grain refinement in the Mg alloy can be concluded to result from a series of deformation-induced continuous reactions, they are essentially similar to continuous dynamic recrystallization (cDRX).


2004 ◽  
Vol 842 ◽  
Author(s):  
Satoru Kobayashi ◽  
Stefan Zaefferer ◽  
André Schneider

ABSTRACTEffect of TiC precipitates on the kinetics of static recrystallisation has been studied by using a Fe-26Al-5Cr (at%) single-phase (α:A2/B2/D03) alloy and two-phase (α+TiC) alloys with different amounts of TiC precipitates. Based on the results, a desirable thermo-mechanical processing is proposed for the development of wrought Fe3Al-based alloys with strengthening MC carbides.In the alloys with a high amount of TiC, needle-like TiC precipitates with 1–10 μm in length formed during air-cooling after homogenisation. Hot deformations with such large precipitates cause inhomogeneous deformation around the particles, leading to particle stimulated nucleation (PSN) and hence accelerate recrystallisation.The occurrence of PSN is harmful for the embrittlement problem, i.e. ductility drastically decreases when recrystallisation occurs, but useful for grain refinement. The following process is proposed to accomplish grain refinement, strengthening by precipitates and avoidance of the embrittlement: hot deformation with a large amount of precipitates to make grain refinement possible by using PSN, followed by hot deformation with a small amount of precipitates near α single-phase region and a subsequent heat treatment to obtain fine precipitates. The fine particles would also act to pin the boundaries of growing grains, thus leading to extended recovery rather than recrystallisation. This process is difficult to carry out in the (Fe-26Al-5Cr)-TiC system because the temperature necessary to enable precipitation is very high and the kinetics is quick. The precipitation temperature is significantly decreased by replacing TiC by VC or MoC.


2021 ◽  
Vol 15 ◽  
pp. 1881-1895
Author(s):  
Guoqing Dai ◽  
Jingzhe Niu ◽  
Yanhua Guo ◽  
Zhonggang Sun ◽  
Zhenhua Dan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document