Recovery of Gallium from Secondary V-Recycling Slag by Alkali Fusion

Author(s):  
Lei Gao ◽  
Zhe Shi ◽  
Gui-fang Zhang
Keyword(s):  
2010 ◽  
Vol 7 (4) ◽  
pp. 1200-1205 ◽  
Author(s):  
Parag Solanki ◽  
Vikal Gupta ◽  
Ruchi Kulshrestha

Coal fly ash was used to synthesize X-type zeolite by alkali fusion followed by hydrothermal treatment. Characteristics of the various Fly ash samples were carried out. Coal proximate analysis was done. Batch experiment was carried out for the adsorption of some heavy metal ions on to synthesized Zeolite. The cost of synthesized zeolite was estimated to be almost one-fifth of that of commercial 13X zeolite available in the market.


1984 ◽  
Vol 56 (4) ◽  
pp. 839-842 ◽  
Author(s):  
Kazuo. Yoshino ◽  
Makoto. Okamoto ◽  
Hidetake. Kakihana ◽  
Takabumi. Nakanishi ◽  
Masamitsu. Ichihashi ◽  
...  

2017 ◽  
Vol 2 (2) ◽  
pp. 89 ◽  
Author(s):  
A.A. Shoppert ◽  
I.V. Loginova ◽  
L.I. Chaikin ◽  
D.A. Rogozhnikov

<p>Fly ash, composed of mullite, hematite, amorphous silica and quartz, is a promising source for the recovery of alumina and silica. Desilication with help of NaOH and alkali fusion-leaching method and utilization of alumina and silica in the fly ash for preparation of sodalite and silica white were explored in this research. The samples were characterized by using wet chemical analysis and X-ray diffraction. The optimal extraction of SiO<sub>2</sub> from Reftinskaya power plant fly ash was 46.2% with leaching at 95 <sup>o</sup>C for 3 h. Sodalite was synthesized at 200 °C for 1 h followed water leaching at 95 °C for 1 h. Silica white with specific surface area 180-220 m2/g was prepared by carbonation of the Na<sub>2</sub>SiO<sub>3</sub> solution at 40 <sup>o</sup>C for 90-120 min. The as-prepared silica has a purity of 98,8%.</p><p>The proposed method is suitable for the comprehensive utilization of the fly ash.</p>


2018 ◽  
Vol 2 (5) ◽  
pp. 7-12
Author(s):  

The bamboo industry in Japan is declined, and disordered bamboo forests are increasing. Although maintenance of bamboo forest is needed, a large amount of bamboo wastes after logging is generated and left untreated. Therefore, new utilization of bamboo wastes after logging are desired. In this research, we aimed to develop a new recycling technology for bamboo using alkali hydroxide. By pyrolyzing bamboo using hydroxide under an inert atmosphere, thermal decomposition of organic contents and alkali fusion of silica component inside the bamboo were carried out simultaneously to recover combustible gas, charcoal and silica component. The thermal decomposition behavior of bamboo, the properties of the obtained charcoal and extraction of silica in the presence of alkali hydroxide were investigated, and the optimum condition of bamboo recycling treatment was examined. As a result, it was found that when 1 g of bamboo was pyrolyzed at higher than 500 °C with 3 g NaOH ,the almost silica was extracted, a large amount of gas generated, and a carbonized material with specific surface area of about more than 1100 m2 /g was obtained.


2021 ◽  
pp. geochem2021-034
Author(s):  
Z. Han ◽  
M. Edraki ◽  
A. Nguyen ◽  
M. Mostert

Tungsten is a critical element used in the industry with increasing global demand. There are millions of tons of current and legacy mineral processing tungsten tailings worldwide that can potentially contaminate the environment and pose human health risks. These tailings could also potentially turn into valuable resources if we thoroughly characterise their geochemical composition. In this study, an innovative method was developed to achieve the complete digestion of tungsten tailings. We tested three different digestion methods (hotplate digestion, bomb digestion, and ColdBlockTM digestion) and compared the results. Additionally, an alkali fusion for major element analysis was also applied and tested. The results showed that alkali fusion is the best method for major elements analysis, while bomb digestion is the best method for tungsten and trace element analysis, but volatile chlorite loss was also observed. The hot plate digestion method for tungsten mine tailings was not recommended, because of poor recoveries of trace elements compared to the bomb digestion method. The quick and safer ColdBlockTM digestion method could be used for Bismuth (Bi), Molybdenum (Mo), and several rare earth element analyses indicated by their recoveries being close to the bomb digestion method. 


1980 ◽  
Vol 10 (12) ◽  
pp. 939-945 ◽  
Author(s):  
Charles E. Berkoff ◽  
Donald E. Rivard ◽  
David Kirkpatrick ◽  
Jeffrey L. Ives
Keyword(s):  

2020 ◽  
Vol 860 ◽  
pp. 128-134
Author(s):  
Cahyaning Fajar Kresna Murti ◽  
Malik Anjelh Baqiya ◽  
Endarko ◽  
Triwikantoro

Particle size analysis of synthesized Al2O3 by dissolution and alkali fusion-coprecipitation methods has been conducted. The formation of nano- or microparticles can be synthesized by the top-down (physically) and bottom-up (chemically) methods. In this study, the commercial alumina (Merck) with the particle size of 63 µm was synthesized through the bottom-up method. The dissolution method was done by reacting to alumina with ammonium hydroxide (NH4OH). The alkali fusion method was carried out by reacting alumina with sodium hydroxide (NaOH) and it obtained by coprecipitation of the alkali fusion product with HCl and NH4OH. The result from both methods were calcined at 600°C. The phase of synthesized Al2O3 was identified by using X-ray diffraction (XRD), whereas the morphology observed using a transmission electron microscope (TEM), and the particle sizes measured by particle sizes analyzer (PSA). The XRD pattern shows the γ-Al2O3 phases with particle sizes of ~33 nm and ~25 nm from TEM observations, while the PSA results revealed agglomerated particles with particle sizes of 1263 nm and 477 nm for the dissolution and alkali fusion-coprecipitation method, respectively. Therefore, both methods can be used to reduce the particle size of γ-Al2O3.


Sign in / Sign up

Export Citation Format

Share Document