scholarly journals A Linear Potential Function for Pairing Heaps

Author(s):  
John Iacono ◽  
Mark Yagnatinsky
2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Ni Song ◽  
Yakui Xue

The rogue waves of the nonlinear Schrödinger equation with time-dependent linear potential function are investigated by using the similarity transformation in this paper. The first-order and second-order rogue waves solutions are obtained and the nonlinear dynamic behaviors of these solutions are discussed in detail. In addition, the amplitudes of the rogue waves under the effect of the gravity field and external magnetic field changing with the time are analyzed by using numerical simulation. The results can be used to study the matter rogue waves in the Bose-Einstein condensates and other fields of nonlinear science.


2013 ◽  
Vol 3 (2) ◽  
pp. 197-202
Author(s):  
Amir Pishkoo ◽  
Maslina Darus

This paper presents a mathematical model that provides analytic connection between four fundamental forces (interactions), by using modified reciprocal theorem,derived in the paper, as a convenient template. The essential premise of this work is to demonstrate that if we obtain with a form of the Yukawa potential function [as a meromorphic univalent function], we may eventually obtain the Coloumb Potential as a univalent function outside of the unit disk. Finally, we introduce the new problem statement about assigning Meijer's G-functions to Yukawa and Coloumb potentials as an open problem.


2019 ◽  
Author(s):  
Elvar Jónsson ◽  
Asmus Ougaard Dohn ◽  
Hannes Jonsson

This work describes a general energy functional formulation of a polarizable embedding QM/MM scheme, as well as an implementation where a real-space Grid-based Projector Augmented Wave (GPAW) DFT method is coupled with a potential function for H<sub>2</sub>O based on a Single Center Multipole Expansion (SCME) of the electrostatics, including anisotropic dipole and quadrupole polarizability.


2015 ◽  
Vol 21 (3) ◽  
pp. NP64-NP65 ◽  
Author(s):  
Shu-Cherng Fang ◽  
David Yang Gao ◽  
Gang-Xuan Lin ◽  
Ruey-Lin Sheu ◽  
Wen-Xun Xing

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1612
Author(s):  
Andrea Paut ◽  
Ante Prkić ◽  
Ivana Mitar ◽  
Perica Bošković ◽  
Dražan Jozić ◽  
...  

A novel ion-selective electrode with membranes based on iron(III) phosphate and silver sulfide integrated into a completely new electrode body design has been developed for the determination of iron(III) cations. The best response characteristics with linear potential change were found in the iron(III) concentration range from 3.97× 10−5 to 10−2 mol L−1. The detection limit was found to be 2.41× 10−5 mol L−1 with a slope of –20.53 ± 0.63 and regression coefficient of 0.9925, while the quantification limit was 3.97× 10−5 M. The potential change per concentration decade ranged from –13.59 ± 0.54 to –20.53 ± 1.56 for Electrode Body 1 (EB1) and from –17.28 ± 1.04 to –24 ± 1.87 for Electrode Body 2 (EB2), which is presented for the first time in this work. The prepared electrode has a long lifetime and the ability to detect changes in the concentration of iron cations within 20 s. Membrane M1 showed high recoveries in the determination of iron cations in iron(III) standard solutions (98.2–101.2%) as well as in two different pharmaceuticals (98.6–106.5%). This proves that this type of sensor is applicable in the determination of ferric cations in unknown samples, and the fact that all sensor parts are completely manufactured in our laboratory proves the simplicity of the method.


Sign in / Sign up

Export Citation Format

Share Document