The Effect of Heat Treatment Technology on Mechanical Properties of Al/Al Alloys Multilayer Sheet Fabricated by Hot Roll Bonding

2012 ◽  
pp. 1705-1711
Author(s):  
Chen Zejun ◽  
Chen Quanzhong ◽  
Kawunga Nyirenda ◽  
Liu Qing
2017 ◽  
Vol 265 ◽  
pp. 712-716 ◽  
Author(s):  
Mikhail V. Maisuradze ◽  
Maksim Ryzhkov ◽  
Aleksandra A. Kuklina

The CCT diagram of the high strength D6AC steel was plotted using the dilatometer data, microstructure investigation, and hardness measurements. The microstructure of the steel under consideration was estimated after various cooling conditions and quenching and tempering. The heat treatment technology of D6AC steel drill bits was developed to obtain the required mechanical properties.


2012 ◽  
Vol 557-559 ◽  
pp. 34-37
Author(s):  
Jing Qiang Zhang ◽  
Jie Min Du ◽  
Ji Wei Guo ◽  
Shou Fan Rong ◽  
Guang Zhou Wang

The influences of Mn and heat-treatment technology on microstructure and mechanical properties of medium-carbon-low-alloy wear-resistant cast steel were investigated. The results show that the hardness first increases and then drops down with the increase of Mn content, and the best hardness is 54HRC with Mn content 1.5%. The impact toughness first increases and then drops down with the increase of Mn content. The hardness and impact toughness first increase and then drop down with the increases of quenching temperature. The optimal impact toughness can be obtaind by quenching at 920°C and tempering at 200°C. Part of lower bainite and residual austenite and mass of tempered martensite are obtaind after tempering.


2011 ◽  
Vol 215 ◽  
pp. 25-28 ◽  
Author(s):  
An Ming Li ◽  
Meng Juan Hu

The effect of quenching temperature on the microstructure and mechanical properties of 40Cr steel by zero time holding quenching were studied. The results showed that the strength and hardness of 40Cr steel increased with the increase of quenching temperature in the range of 860~940°C, the strength and hardness reach the maximum at 920°C and then decrease. The metallographic analysis shows austenite grains of the samples by “Zero Time Holding” Quenching have been refined compared with the traditional heat treatment technology. Fine lath martensite was obtained by the “zero time holding” quenching due to the smaller austenitic crystal grain and the uneven distribution of the carbon concentration in austenitic crystal grain.


2008 ◽  
Vol 575-578 ◽  
pp. 1414-1419 ◽  
Author(s):  
Wen Min Zhao ◽  
Zhen Xu Liu ◽  
Zi Lai Ju ◽  
Bo Liao ◽  
Xue Guang Chen

The type, shape and distribution of carbide take directly effect on the mechanical properties of high chromium castings. Vanadium is able to stabilize the structure of carbide in high chromium cast iron, meanwhile the hardness of carbide containing vanadium can reaches about 2800HV. In some cases, vanadium can also refine the microstructure. Rare-earth is able to change the shape of carbide in cast iron, refine the grain size of ferrite and improve the mechanical properties of castings. In this experiment, intention of adding vanadium and rare-earth is modification of mechanical properties with the proper heat treatment technology. With the help of SEM, the characteristics of carbide, such as shape, distribution and quantity can be observed and mechanical properties have been improved for better wear-resistance.


2010 ◽  
Vol 163-167 ◽  
pp. 283-287
Author(s):  
An Ming Li ◽  
Meng Juan Hu

The effect of “zero time holding” quenching temperature on the 45 steel’s microstructure and mechanical properties were studied by the orthogonal regressive principle. The 45 steel’s microstructure characteristics with “zero time holding” quenched were analyzed. The results showed that the 45 steel’s strength and hardness increased with the increase of quenching temperature in the range of 780~ 900°C. The grain size in zero time holding was smaller than that with holding time (60 min). The martensite lath was very fine after “zero time holding” quenched. The mechanical properties of the 45 steel Processed by the zero time holding heat treatment is higher than those processed by the conventional heat treatment. The experimental results showed that the properties of the drive shaft with 45 steel were satisfying after they are processed with the “zero time holding”heat treatment technology.


2010 ◽  
Vol 160-162 ◽  
pp. 200-203
Author(s):  
Yu Yan Li ◽  
Xie Qing Huang

In order to solve technological key problem of metallic rubber in the respect of engineering application, based on porous materials theory, this paper explored the method of nonlinear constitutive relationship constructed, thus in view of the effect of heat treatment technology on nonlinear constitutive relationship of metallic rubber, static experiments are made for seven kinds of tempered metallic rubber and seven kinds of untempered metallic rubber, it was found that each coefficient of nonlinear constitutive relationship of tempered metallic rubber was bigger than that of untempered metallic rubber, and the deformation of tempered metallic rubber was smaller than that of untempered metallic rubber. Lastly it concluded that appropriate heat treatment technology could improve mechanical properties of metallic rubber.


Author(s):  
A.F. Degtyarev ◽  
V.N. Skorobogatykh ◽  
V.V. Nazaratin ◽  
F.A. Nuraliev ◽  
A.S. Kaftannikov

The analysis of the literature data on the steels used for the manufacture of castings operating at negative temperatures and the technology of their manufacture is carried out. The effect of chemical and phase compositions on the strength and impact strength characteristics is revealed. The rational technology for manufacturing of these castings is considered. Methods for obtaining of high impact strength of castings made of 20GL type steels at –40...–60 °C temperatures are given. Modification, microalloying and rational modes of heat treatment are used as methods of rational control of the steels structure. The heat treatment technology of castings, which provides the necessary package of properties and reliable operation, is proposed.


Sign in / Sign up

Export Citation Format

Share Document