Effect of Gurney Flaps on Overall Helicopter Flight Envelope

Author(s):  
Vasileios Pastrikakis ◽  
George Barakos
2016 ◽  
Vol 120 (1230) ◽  
pp. 1230-1261 ◽  
Author(s):  
V.A. Pastrikakis ◽  
R. Steijl ◽  
G.N. Barakos

ABSTRACTThis paper presents a study of the W3-Sokol main rotor equipped with Gurney flaps. The effect of the active Gurney is tested at low and high forward flight speeds to draw conclusions about the potential enhancement of the rotorcraft performance for the whole flight envelope. The effect of the flap on the trimming and handling of a full helicopter is also investigated. Fluid and structure dynamics were coupled in all cases, and the rotor was trimmed at different thrust coefficients. The Gurney proved to be efficient at medium to high advance ratios, where the power requirements of the rotor were decreased by up to 3.3%. However, the 1/rev actuation of the flap might be an issue for the trimming and handling of the helicopter. The current study builds on the idea that any active mechanism operating on a rotor could alter the dynamics and the handling of the helicopter. A closed loop actuation of the Gurney flap was put forward based on a pressure divergence criterion, and it led to further enhancement of the aerodynamic performance. Next, a generic light utility helicopter was built using 2D aerodynamics of the main aerofoil section of the W3 Sokol blade along with a robust controller, and the response of the rotorcraft to control inputs was tested. This analysis proved that the 1/Rev actuation of the Gurney did not alter the handling qualities of the helicopter, and as a result, it can be implemented as a flow control mechanism for aerodynamic enhancement and retreating blade stall alleviation.


Author(s):  
Pavle Šćepanović ◽  
Frederik A. Döring

AbstractFor a broad range of applications, flight mechanics simulator models have to accurately predict the aircraft dynamics. However, the development and improvement of such models is a difficult and time consuming process. This is especially true for helicopters. In this paper, two rapidly applicable and implementable methods to derive linear input filters that improve the simulator model are presented. The first method is based on model inversion, the second on feedback control. Both methods are evaluated in the time domain, compared to recorded helicopter flight test data, and assessed based on root mean square errors and the Qualification Test Guide bounds. The best results were achieved when using the first method.


Author(s):  
Dirk Van Baelen ◽  
M. M. (René) van Paassen ◽  
Joost Ellerbroek ◽  
David A. Abbink ◽  
Max Mulder

Robotica ◽  
2000 ◽  
Vol 18 (3) ◽  
pp. 299-303 ◽  
Author(s):  
Carl-Henrik Oertel

Machine vision-based sensing enables automatic hover stabilization of helicopters. The evaluation of image data, which is produced by a camera looking straight to the ground, results in a drift free autonomous on-board position measurement system. No additional information about the appearance of the scenery seen by the camera (e.g. landmarks) is needed. The technique being applied is a combination of the 4D-approach with two dimensional template tracking of a priori unknown features.


2017 ◽  
Author(s):  
Malika Yaici ◽  
Kamel Hariche ◽  
Tim Clarke

2014 ◽  
Vol 59 (4) ◽  
pp. 1-18 ◽  
Author(s):  
Ioannis Goulos ◽  
Vassilios Pachidis ◽  
Pericles Pilidis

This paper presents a mathematical model for the simulation of rotor blade flexibility in real-time helicopter flight dynamics applications that also employs sufficient modeling fidelity for prediction of structural blade loads. A matrix/vector-based formulation is developed for the treatment of elastic blade kinematics in the time domain. A novel, second-order-accurate, finite-difference scheme is employed for the approximation of the blade motion derivatives. The proposed method is coupled with a finite-state induced-flow model, a dynamic wake distortion model, and an unsteady blade element aerodynamics model. The integrated approach is deployed to investigate trim controls, stability and control derivatives, nonlinear control response characteristics, and structural blade loads for a hingeless rotor helicopter. It is shown that the developed methodology exhibits modeling accuracy comparable to that of non-real-time comprehensive rotorcraft codes. The proposed method is suitable for real-time flight simulation, with sufficient fidelity for simultaneous prediction of oscillatory blade loads.


Sign in / Sign up

Export Citation Format

Share Document