Learning Safe Interactions and Full-Control

Author(s):  
Guillaume Maudoux ◽  
Charles Pecheur ◽  
Sébastien Combéfis
Keyword(s):  
Author(s):  
Weiping Liu ◽  
Jennifer Fung ◽  
W.J. de Ruijter ◽  
Hans Chen ◽  
John W. Sedat ◽  
...  

Electron tomography is a technique where many projections of an object are collected from the transmission electron microscope (TEM), and are then used to reconstruct the object in its entirety, allowing internal structure to be viewed. As vital as is the 3-D structural information and with no other 3-D imaging technique to compete in its resolution range, electron tomography of amorphous structures has been exercised only sporadically over the last ten years. Its general lack of popularity can be attributed to the tediousness of the entire process starting from the data collection, image processing for reconstruction, and extending to the 3-D image analysis. We have been investing effort to automate all aspects of electron tomography. Our systems of data collection and tomographic image processing will be briefly described.To date, we have developed a second generation automated data collection system based on an SGI workstation (Fig. 1) (The previous version used a micro VAX). The computer takes full control of the microscope operations with its graphical menu driven environment. This is made possible by the direct digital recording of images using the CCD camera.


Undoubtedly is a technological revolution that has certainly focused on the interest of software development companies, companies of IT, hardware design, networks and artificial intelligence. A technological revolution that started a few years ago and has evolved rapidly, thanks to the technological evolution of IT and networks. It is a combination of many communication protocols, sensors and other intelligent technologies, the correlation between smart technologies, networks and services that all together complete processes in order to achieve the result for which they were installed. In advanced technology countries, both simple users and industry use IoT where sensors are simplified and automated at home and in industry, there is continuous monitoring, control and prediction of product failure for the benefit of efficient production of high quality products and control production at each stage of product processing / production. Someone could well think and say that all this is fantastic and that we have solved the problem of organization, easy life without further thoughts and worries since everything is done automatically.An IoT in an intelligent house could literally regulate everything, using sensors and appropriate software could talk with a human person, as well as someone could appropriately entice all that security and literally take full control of the premises of a home with consequences from minimal to catastrophic including the complete destruction of a home.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
LAL SINGH ◽  
PRADEEP KUMAR SINGH ◽  
HARI BAKSH ◽  
SARVESH SINGH

Vegetable crops are conducting under Farmers Participatory Research Trial in Temperate regions of Kashmir Valley. The trials are designed and managed by farmers, the researchers have only advice for selection of the resource conservation technology (treatments). Farmers have full control over the selection of treatments to be used on his/her field. The main objectives of this type of research is to be established and demonstrate the benefits of resource conservation technologies like raised bed, furrow irrigated planting system, zero tillage etc. over the conventional practices. In these type of trial farmers are briefed about new practices. The participating farmers are encouraged to experiment their own and are given the full control over the selection of subset of resource conservation technologies to be tested on their fields with a view to assess farmer innovation and acceptability.


Work ◽  
2021 ◽  
Vol 68 (s1) ◽  
pp. S111-S118
Author(s):  
Neil J. Mansfield ◽  
Kartikeya Walia ◽  
Aditya Singh

BACKGROUND: Autonomous vehicles can be classified on a scale of automation from 0 to 5, where level 0 corresponds to vehicles that have no automation to level 5 where the vehicle is fully autonomous and it is not possible for the human occupant to take control. At level 2, the driver needs to retain attention as they are in control of at least some systems. Level 3-4 vehicles are capable of full control but the human occupant might be required to, or desire to, intervene in some circumstances. This means that there could be extended periods of time where the driver is relaxed, but other periods of time when they need to drive. OBJECTIVE: The seat must therefore be designed to be comfortable in at least two different types of use case. METHODS: This driving simulator study compares the comfort experienced in a seat from a production hybrid vehicle whilst being used in a manual driving mode and in autonomous mode for a range of postures. RESULTS: It highlights how discomfort is worse for cases where the posture is non-optimal for the task. It also investigates the design of head and neckrests to mitigate neck discomfort, and shows that a well-designed neckrest is beneficial for drivers in autonomous mode.


2011 ◽  
Vol 11 (01) ◽  
pp. 231-272 ◽  
Author(s):  
DIEGO A. GARZÓN-ALVARADO ◽  
MARCO A. VELASCO ◽  
CARLOS A. NARVÁEZ-TOVAR

One area of tissue engineering concerns research into alternatives for new bone formation and replacing its function. Scaffolds have been developed to meet this requirement, allowing cell migration, bone tissue growth, transport of growth factors and nutrients, and the improvement of the mechanical properties of bone. Scaffolds are made from different biomaterials and manufactured using several techniques that, in some cases, do not allow full control over the size and orientation of the pores characterizing the scaffold. A novel hypothesis that a reaction–diffusion (RD) system can be used for designing the geometrical specifications of the bone matrix is thus presented here. The hypothesis was evaluated by making simulations in two- and three-dimensional RD systems in conjunction with the biomaterial scaffold. The results showed the methodology's effectiveness in controlling features such as the percentage of porosity, size, orientation, and interconnectivity of pores in an injectable bone matrix produced by the proposed hypothesis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Przemysław Kościk ◽  
Arkadiusz Kuroś ◽  
Adam Pieprzycki ◽  
Tomasz Sowiński

AbstractWe derive and describe a very accurate variational scheme for the ground state of the system of a few ultra-cold bosons confined in one-dimensional traps of arbitrary shapes. It is based on assumption that all inter-particle correlations have two-body nature. By construction, the proposed ansatz is exact in the noninteracting limit, exactly encodes boundary conditions forced by contact interactions, and gives full control on accuracy in the limit of infinite repulsions. We show its efficiency in a whole range of intermediate interactions for different external potentials. Our results manifest that for generic non-parabolic potentials mutual correlations forced by interactions cannot be captured by distance-dependent functions.


2014 ◽  
Vol 136 (36) ◽  
pp. 12588-12591 ◽  
Author(s):  
Songsu Kang ◽  
M. Mustafa Cetin ◽  
Ruiyang Jiang ◽  
Eric S. Clevenger ◽  
Michael F. Mayer
Keyword(s):  

2019 ◽  
Vol 252 ◽  
pp. 02002
Author(s):  
Michał Jakubowicz ◽  
Mirosław Rucki ◽  
Zbigniew Siemiątkowski

The paper describes the test rig dedicated for air gauge dynamical characteristics assessment. The computerised system enables measurement of the amplitudes of back-pressure pk dependent on the input signal circular frequency ω. Dedicated software performs full control on the calibration procedure, which consists of setting a rotational speed and registration of measuring signal, and further data processing. Circular frequency ω was gradually changed with the appropriate step, in order to obtain a series of frequencies in the range from 0.1 to 20 Hz. The response of a measurement system was registered as a sinusoidal curve which after smoothening and interpolation procedures provided an amplitude-frequency graph with its main characteristics, such as time constant and the frequency f0.95 that generated dynamic error 5%. It was demonstrated that sine input dynamic calibration corresponds with real conditions of the in-process measurement with air gauges.


ChemInform ◽  
2014 ◽  
Vol 45 (33) ◽  
pp. no-no
Author(s):  
Nathalie Camus ◽  
Zakaria Halime ◽  
Nathalie Le Bris ◽  
Helene Bernard ◽  
Carlos Platas-Iglesias ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document