Impacts of Climate Change on Urban Areas and Nature-Based Solutions for Adaptation

Author(s):  
Tobias Emilsson ◽  
Åsa Ode Sang
2021 ◽  
Author(s):  
Manuel Esperon-Rodriguez ◽  
John B Baumgartner ◽  
Linda J Beaumont ◽  
Jonathan Lenoir ◽  
David A Nipperess ◽  
...  

Urban forests (i.e. all vegetation present in urban areas), provide environmental and socio-economic benefits to more than half of the global population. Projected climate change threatens these benefits to society. Here, we assess vulnerability to climate change of 16,006 plant species present in the urban forests of 1,010 cities within 93 countries, using three vulnerability metrics: exposure, safety margin and risk. Exposure expresses the magnitude of projected changes in climate in a given area, safety margin measures species' sensitivity to climate change, and risk is the difference between exposure and safety margin. We identified 9,676 (60.5%) and 8,344 (52.1%) species exceeding their current climatic tolerance (i.e. safety margin) for mean annual temperature (MAT) and annual precipitation (AP), respectively. By 2050, 13,479 (84.2%) and 9,960 (62.2%) species are predicted to be at risk from projected changes in MAT and AP, respectively, with risk increasing in cities at lower latitudes. Our results can aid evaluation of the impacts of climate change on urban forests and identify the species most at risk. Considering future climates when selecting species for urban plantings will enhance the long-term societal benefits provided by urban forests, including their contribution to mitigating the magnitude and impacts of climate change.


2019 ◽  
Vol 8 (2S8) ◽  
pp. 1754-1757

Cities across the world are the main contributors to climate change but at the same time they are also the most vulnerable to its consequences. Some of the disastrous impacts of climate change include extreme weather events, periods of extreme heat and cold, high precipitation, floods, strong cyclones and storms. There is a need for urban design guidelines to effectively address the issues of climate chanbe and increase the resilience of cities. One way to adapt to this is through engineered infrastructure. Today nearly 70% of the world live in urban areas and in the next 20 years two billion more people are expected to move to the cities. With increasing urban densification land and buildable areas are going to become increasingly scarce. One possible solution is to build downwards instead of upwards. Underground areas are less susceptible to external influences and have the ability to better withstand natural catastrophes and hence can be sustainable solution for an unpredictable future. This paper will analyze the viability of underground cities through examples from history and existing case studies along with new upcoming proposals and probe how using underground spaces can increase the resilience of future cities


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2658 ◽  
Author(s):  
Eduardo Martínez-Gomariz ◽  
Luca Locatelli ◽  
María Guerrero ◽  
Beniamino Russo ◽  
Montse Martínez

Pluvial flooding in Badalona (Spain) occurs during high rainfall intensity events, which in the future could be more frequent according to the latest report from the Intergovernmental Panel on Climate Change (IPCC). In this context, the present study aims at quantifying the potential impacts of climate change for the city of Badalona. A comprehensive pluvial flood multi risk assessment has been carried out for the entire municipality. The assessment has a twofold target: People safety, based on both pedestrians’ and vehicles’ stability, and impacts on the economic sector in terms of direct damages on properties and vehicles, and indirect damages due to businesses interruption. Risks and damages have also been assessed for the projected future rainfall conditions which enabled the comparison with the current ones, thereby estimating their potential increment. Moreover, the obtained results should be the first step to assess the efficiency of adaptation measures. The novelty of this paper is the integration of a detailed 1D/2D urban drainage model with multiple risk criteria. Although, the proposed methodology was tested for the case study of Badalona (Spain), it can be considered generally applicable to other urban areas affected by pluvial flooding.


2022 ◽  
Vol 14 (2) ◽  
pp. 688
Author(s):  
Roberta Cocci Grifoni ◽  
Giorgio Caprari ◽  
Graziano Enzo Marchesani

This paper presents a new methodological approach for analysing the impacts of climate change on the urban habitat and improving the quality of life for citizens. The study falls within the diagnostic phase of the Climate Change and Urban Health Resilience (CCUHRE) research project applied to the rationalist neighbourhood of Monticelli, a suburb of Ascoli Piceno (Italy). The methodological approach tests innovative and multidisciplinary cognitive tools to quantify the impacts of climate change and create refined risk maps combining remote sensing, spatial data, satellite images, and thermal fluid dynamic (CFD) simulations. These tools created an atlas of green areas and surfaces using scientific indexes that describe the relationship between the urban form and heat and between the type of ground and materials. The information yielded by geoprocessing will allow critical aspects in the context to be addressed with site-specific strategies. In fact, through downscaling, it is possible to analyse the thermal fluid dynamics characteristics of the most significant urban areas and identify the related weather/climate characteristics, perceptual scenarios, and thermal stressed regions. The results have provided a dataset that defines the degree of vulnerability of the neighbourhood and identifies the areas exposed to thermal risk.


2019 ◽  
Vol 2 (1) ◽  
pp. 146-167 ◽  
Author(s):  
James D. S. Cullis ◽  
Annabel Horn ◽  
Nico Rossouw ◽  
Lloyd Fisher-Jeffes ◽  
Marlé M. Kunneke ◽  
...  

Abstract By 2050 it is predicted that 67% of the world population is expected to be living in urban areas, with the most rapid levels of urbanisation taking place in developing countries. Urbanisation is often directly linked to the degradation of environmental quality, including quality of water, air and noise. Concurrently, the climate is changing. Together, the negative impacts of climate change and urbanisation pose significant challenges, especially in developing countries where resources to mitigate these impacts are limited. Focusing on the Berg River Catchment in South Africa, which is experiencing increasing levels of urbanisation, the impacts of climate change, the ‘wicked problem’ of service delivery to the historically disadvantaged within a developing country, persistent infrastructure backlogs, and where high unemployment is prevalent, this paper explores the increasing water quality risks due to climate change and rapid urban development and the likely direct and indirect economic impacts that this will have on the agriculture sector, which is a key contributor to the regional and national economy. The results give support to the need to invest in risk mitigation measures including the provision of basic services, the upgrading and maintenance of wastewater treatment plants and investing in ecological infrastructure.


Sign in / Sign up

Export Citation Format

Share Document