A telemanipulation system allows a human user to manipulate a remote environment using a local interface (master robot) to control a remote (slave) robot. In doing so, it is desirable to provide users with appropriate sensory feedback, most often taking the form of visual and force information. In the presence of communication delays, however, a force feedback telemanipulation system must overcome detrimental effects caused by the delay, both on the quality of feedback to the user and the stability of the control system. For large delays, like those experienced in space telerobotics, the user's perceptive abilities are distorted and challenged by the lag between action and response. With this paper, a user-centered approach is proposed which seeks to simultaneously provide stable master-slave interaction as well as a natural user experience, tolerant of large delays. Rather than directly sending sensory information from the slave robot to the user, the goal is to use this information to create a real-time virtual model of the remote environment, which then serves as the user's interface. Maintaining a dynamic, virtual model locally at the master-side, the user is provided with immediate visual and haptic responses to his/her actions through the master device. At the remote site, the slave robot tracks the user's continuous and natural motion commands, while providing new information needed to update the virtual model. This method abstracts the data transmitted between the sites and creates greater delay tolerance. The basic principles of the approach are demonstrated on a simple one-degree of freedom telerobotic system, with a rigid, stationary slave environment.