On the Development of a New Master Device Used for Medical Tasks

2018 ◽  
Vol 10 (4) ◽  
Author(s):  
Houssem Saafi ◽  
Med Amine Laribi ◽  
Said Zeghloul ◽  
Marc Arsicault

This paper discusses the design of a new spherical parallel manipulator (SPM), which is used as a master device for medical tasks. This device is obtained by changing the kinematics of a classic SPM to eliminate the singularity from the device's useful workspace. The kinematic models of the new device are studied. The geometric parameters of the new device are optimized to eliminate the singularity. A prototype of the new master device is presented. Experiments are carried out using the device which allowed the control of a surgical robot.

Robotica ◽  
2018 ◽  
Vol 37 (7) ◽  
pp. 1267-1288 ◽  
Author(s):  
Célestin Préault ◽  
Houssem Saafi ◽  
Med Amine Laribi ◽  
Said Zeghloul

SUMMARYThis paper introduces a novel kinematic of a four degrees of freedom (DoFs) device based on Delta architecture. This new device is expected to be used as a haptic device for tele-operation applications. The challenging task was to obtain orientation DoFs from the Delta structure. A fourth leg is added to the Delta structure to convert translations into rotations and to provide translation of the handle. The fourth leg is linked to the base and to the moving platform by two universal joints. The architecture as well as the kinematic model of the new structure, called 4haptic, are presented. Comparisons in terms of kinematic behavior between the 4haptic device and the existing device developed based on spherical parallel manipulator architecture are presented. The results prove the improved behavior of the 4haptic device offering a singularity-free useful workspace, which makes it a suitable candidate to tele-operated system for Minimally Invasive Surgery. The dimensions of the 4haptic device, having the smallest workspace containing a prespecified region in space, are identified based on an optimal dimensional synthesis method.


Robotica ◽  
2021 ◽  
pp. 1-30
Author(s):  
Soheil Zarkandi

Abstract A comprehensive dynamic modeling and actuator torque minimization of a new symmetrical three-degree-of-freedom (3-DOF) 3-PṞR spherical parallel manipulator (SPM) is presented. Three actuating systems, each of which composed of an electromotor, a gearbox and a double Rzeppa-type driveshaft, produce input torques of the manipulator. Kinematics of the 3-PṞR SPM was recently studied by the author (Zarkandi, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020, https://doi.org/10.1177%2F0954406220938806). In this paper, a closed-form dynamic equation of the manipulator is derived with the Newton–Euler approach. Then, an optimization problem with kinematic and dynamic constraints is presented to minimize torques of the actuators for implementing a given task. The results are also verified by the SimMechanics model of the manipulator.


Robotica ◽  
1997 ◽  
Vol 15 (4) ◽  
pp. 399-405 ◽  
Author(s):  
Sylvie Leguay-Durand ◽  
Claude Reboulet

A new kinematic design of a parallel spherical wrist with actuator redundancy is presented. A special feature of this parallel manipulator is the arrangement of co-axial actuators which allows unlimited rotation about any axis inside a cone-shaped workspace. A detailed kinematic analysis has shown that actuator redundancy not only removes singularities but also increases workspace while improving dexterity. The structure optimization has been performed with a global dexterity criterion. Using a conditioning measure, a comparison with a non-redundant structure of the same type was performed and shows that a significant improvement in dexterity has been obtained.


2013 ◽  
Vol 325-326 ◽  
pp. 1014-1018
Author(s):  
Hai Rong Fang ◽  
Zhi Hong Chen ◽  
Yue Fa Fang

In this paper, a novel 3-degree-of-freedom (DOF) parallel manipulator that can perform three rotations around the remote centre is presented. The theory of screws and reciprocal screws is employed for the analysis of the geometric conditions. In particular, using circular guide to instead of R joints, so that has the advantage of enabling continuous 360° revolute around Z-axis. The inverse kinematics of mechanism is given and the workspace has a good performance. To compare with the machine constructed with traditional joints, it has the advantage of high rigidity and precision.


2008 ◽  
Vol 1 (1) ◽  
Author(s):  
Gim Song Soh ◽  
J. Michael McCarthy

This paper presents a procedure that determines the dimensions of two constraining links to be added to a three degree-of-freedom spherical parallel manipulator so that it becomes a one degree-of-freedom spherical (8, 10) eight-bar linkage that guides its end-effector through five task poses. The dimensions of the spherical parallel manipulator are unconstrained, which provides the freedom to specify arbitrary base attachment points as well as the opportunity to shape the overall movement of the linkage. Inverse kinematics analysis of the spherical parallel manipulator provides a set of relative poses between all of the links, which are used to formulate the synthesis equations for spherical RR chains connecting any two of these links. The analysis of the resulting spherical eight-bar linkage verifies the movement of the system.


Sign in / Sign up

Export Citation Format

Share Document