Model Mediated Telemanipulation

Author(s):  
Probal Mitra ◽  
Gu¨nter Niemeyer

A telemanipulation system allows a human user to manipulate a remote environment using a local interface (master robot) to control a remote (slave) robot. In doing so, it is desirable to provide users with appropriate sensory feedback, most often taking the form of visual and force information. In the presence of communication delays, however, a force feedback telemanipulation system must overcome detrimental effects caused by the delay, both on the quality of feedback to the user and the stability of the control system. For large delays, like those experienced in space telerobotics, the user's perceptive abilities are distorted and challenged by the lag between action and response. With this paper, a user-centered approach is proposed which seeks to simultaneously provide stable master-slave interaction as well as a natural user experience, tolerant of large delays. Rather than directly sending sensory information from the slave robot to the user, the goal is to use this information to create a real-time virtual model of the remote environment, which then serves as the user's interface. Maintaining a dynamic, virtual model locally at the master-side, the user is provided with immediate visual and haptic responses to his/her actions through the master device. At the remote site, the slave robot tracks the user's continuous and natural motion commands, while providing new information needed to update the virtual model. This method abstracts the data transmitted between the sites and creates greater delay tolerance. The basic principles of the approach are demonstrated on a simple one-degree of freedom telerobotic system, with a rigid, stationary slave environment.

2000 ◽  
Vol 80 (1) ◽  
pp. 83-133 ◽  
Author(s):  
J. Duysens ◽  
F. Clarac ◽  
H. Cruse

How is load sensed by receptors, and how is this sensory information used to guide locomotion? Many insights in this domain have evolved from comparative studies since it has been realized that basic principles concerning load sensing and regulation can be found in a wide variety of animals, both vertebrate and invertebrate. Feedback about load is not only derived from specific load receptors but also from other types of receptors that previously were thought to have other functions. In the central nervous system of many species, a convergence is found between specific and nonspecific load receptors. Furthermore, feedback from load receptors onto central circuits involved in the generation of rhythmic locomotor output is commonly found. During the stance phase, afferent activity from various load detectors can activate the extensor part in such circuits, thereby providing reinforcing force feedback. At the same time, the flexion is suppressed. The functional role of this arrangement is that activity in antigravity muscles is promoted while the onset of the next flexion is delayed as long as the limb is loaded. This type of reinforcing force feedback is present during gait but absent in the immoble resting animal.


2006 ◽  
Vol 128 (4) ◽  
pp. 800-810 ◽  
Author(s):  
Katherine J. Kuchenbecker ◽  
Günter Niemeyer

Telerobotic systems have persistently struggled to provide users with realistic force feedback; high-frequency contact transients convey important information about the remote environment but are typically attenuated to avoid the contact instability they incite. This undesirable behavior can be traced to high-frequency induced master motion, movement of the master device that is caused by force feedback rather than user intention. Such motion is interpreted as a position command to the slave, closing an internal control loop that is unstable under high gain. This paper examines the phenomenon of induced master motion in position-force teleoperation, presenting a new approach for achieving stable, high-gain force reflection using model-based cancellation. Requirements for the model of the induced motion dynamics and methods for its characterization are described, focusing on successive isolation of inertial and connecting elements. The sixth-order nonlinear model obtained for a one-degree-of-freedom user-master system is validated and then tested in a cancellation controller. Canceling high-frequency induced master motion during teleoperation is shown to improve the stability of impacts, allowing significantly higher force reflection levels and a more authentic user experience.


2019 ◽  
Vol 39 (4) ◽  
pp. 514-539 ◽  
Author(s):  
Marco Laghi ◽  
Arash Ajoudani ◽  
Manuel G. Catalano ◽  
Antonio Bicchi

Usability is one of the most important aspects of teleoperation. Ideally, the operator’s experience should be one of complete command over the remote environment, but also be as close as possible to what they would have if physically present at the remote end, i.e., transparency in terms of both action and perception. These two aspects may coincide in favorable conditions, where classic approaches such as the four-channel architecture ensures transparency of the control framework. In the presence of substantial delays between the user and the slave, however, the stability–performance trade-off inherent to bilateral teleoperation deteriorates not only transparency, but also command. An alternative, unilateral approach is given by tele-impedance, which controls the slave–environment interaction by measuring and remotely replicating the user’s limb endpoint position and impedance. Not including force feedback to the operator, tele-impedance is absolutely robust to delays, whereas it completely lacks transparency. This article introduces a novel control framework that integrates a new, fully transparent, two-channel bilateral architecture with the tele-impedance paradigm. The result is a unified solution that mitigates problems of classical approaches, and provides the user with additional tools to modulate the slave robot’s physical interaction behavior, resulting in a better operator experience in spite of time inconsistencies. The validity and effectiveness of the proposed solution is demonstrated in terms of performance in the interaction tasks, of user fatigue and overall experience.


2019 ◽  
Vol 27 (1) ◽  
pp. 63-71
Author(s):  
Hadir H. Shubbar ◽  
Andrey V. Guirinsky

The main approaches to understanding the essence of “stability of banking system” are conducted in the article. The basic principles are also given, inherent in a stable banking system. Further, the main factors affecting the stability of the banking system are considered. The article determined the components of ensuring the assessment of the bank’s financial stability. The basic principles of effective banking supervision are the actual minimum standard for prudent regulation and supervision of banks and banking systems. Initially issued by the Basel Committee on Banking Supervision in 1997, they are used by countries as a guide to assess the quality of their surveillance systems and to determine future work towards achieving a basic level of rational oversight practices. The core principles are also used by the International Monetary Fund (IMF) and the World Bank in the context of the Financial Sector Assessment Program (FSAP) to assess the effectiveness of banking supervisory systems and country practices.


2019 ◽  
pp. 3-8
Author(s):  
N.Yu. Bobrovskaya ◽  
M.F. Danilov

The criteria of the coordinate measurements quality at pilot-experimental production based on contemporary methods of quality management system and traditional methods of the measurements quality in Metrology are considered. As an additional criterion for quality of measurements, their duration is proposed. Analyzing the problem of assessing the quality of measurements, the authors pay particular attention to the role of technological heredity in the analysis of the sources of uncertainty of coordinate measurements, including not only the process of manufacturing the part, but all stages of the development of design and technological documentation. Along with such criteria as the degree of confidence in the results of measurements; the accuracy, convergence, reproducibility and speed of the results must take into account the correctness of technical specification, and such characteristics of the shape of the geometric elements to be controlled, such as flatness, roundness, cylindrical. It is noted that one of the main methods to reduce the uncertainty of coordinate measurements is to reduce the uncertainty in the initial data and measurement conditions, as well as to increase the stability of the tasks due to the reasonable choice of the basic geometric elements (measuring bases) of the part. A prerequisite for obtaining reliable quality indicators is a quantitative assessment of the conditions and organization of the measurement process. To plan and normalize the time of measurements, the authors propose to use analytical formulas, on the basis of which it is possible to perform quantitative analysis and optimization of quality indicators, including the speed of measurements.


Author(s):  
N.A. Jurk ◽  

The article presents scientific research in the field of statistical controllability of the food production process using the example of bakery products for a certain time interval using statistical methods of quality management. During quality control of finished products, defects in bakery products were identified, while the initial data were recorded in the developed form of a checklist for registering defects. It has been established that the most common defect is packaging leakage. For the subsequent statistical assessment of the stability of the production process and further analysis of the causes of the identified defect, a Shewhart control chart (p-card by an alternative feature) was used, which allows you to control the quality of manufactured products by the number of defects detected. Analyzing the control chart, it was concluded that studied process is conditionally stable, and the emerging defects are random. At the last stage of the research, the Ishikawa causal diagram was used, developed using the 6M mnemonic technique, in order to identify the most significant causes that affect the occurrence of the considered defect in bakery products. A more detailed study will allow the enterprise to produce food products that meet the established requirements.


2012 ◽  
Vol 9 (2) ◽  
pp. 53-57 ◽  
Author(s):  
O.V. Darintsev ◽  
A.B. Migranov

The main stages of solving the problem of planning movements by mobile robots in a non-stationary working environment based on neural networks, genetic algorithms and fuzzy logic are considered. The features common to the considered intellectual algorithms are singled out and their comparative analysis is carried out. Recommendations are given on the use of this or that method depending on the type of problem being solved and the requirements for the speed of the algorithm, the quality of the trajectory, the availability (volume) of sensory information, etc.


Author(s):  
Sonja Kleinlogel ◽  
Christian Vogl ◽  
Marcus Jeschke ◽  
Jakob Neef ◽  
Tobias Moser

Impairments of vision and hearing are highly prevalent conditions limiting the quality of life and presenting a major socioeconomic burden. For long, retinal and cochlear disorders have remained intractable for causal therapies, with sensory rehabilitation limited to glasses, hearing aids, and electrical cochlear or retinal implants. Recently, the application of gene therapy and optogenetics to eye and ear has generated hope for a fundamental improvement of vision and hearing restoration. To date, one gene therapy for the restoration of vision has been approved and undergoing clinical trials will broaden its application including gene replacement, genome editing, and regenerative approaches. Moreover, optogenetics, i.e. controlling the activity of cells by light, offers a more general alternative strategy. Over little more than a decade, optogenetic approaches have been developed and applied to better understand the function of biological systems, while protein engineers have identified and designed new opsin variants with desired physiological features. Considering potential clinical applications of optogenetics, the spotlight is on the sensory systems. Multiple efforts have been undertaken to restore lost or hampered function in eye and ear. Optogenetic stimulation promises to overcome fundamental shortcomings of electrical stimulation, namely poor spatial resolution and cellular specificity, and accordingly to deliver more detailed sensory information. This review aims at providing a comprehensive reference on current gene therapeutic and optogenetic research relevant to the restoration of hearing and vision. We will introduce gene-therapeutic approaches and discuss the biotechnological and optoelectronic aspects of optogenetic hearing and vision restoration.


Author(s):  
Johannes Klement

AbstractTo which extent do happiness correlates contribute to the stability of life satisfaction? Which method is appropriate to provide a conclusive answer to this question? Based on life satisfaction data of the German SOEP, we show that by Negative Binomial quasi-maximum likelihood estimation statements can be made as to how far correlates of happiness contribute to the stabilisation of life satisfaction. The results show that happiness correlates which are generally associated with a positive change in life satisfaction, also stabilise life satisfaction and destabilise dissatisfaction with life. In such as they lower the probability of leaving positive states of life satisfaction and increase the probability of leaving dissatisfied states. This in particular applies to regular exercise, volunteering and living in a marriage. We further conclude that both patterns in response behaviour and the quality of the measurement instrument, the life satisfaction scale, have a significant effect on the variation and stability of reported life satisfaction.


Drones ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 22
Author(s):  
Andrew Oakey ◽  
Tim Waters ◽  
Wanqing Zhu ◽  
Paul G. Royall ◽  
Tom Cherrett ◽  
...  

The concept of transporting medical products by drone is gaining a lot of interest amongst the medical and logistics communities. Such innovation has generated several questions, a key one being the potential effects of flight on the stability of medical products. The aims of this study were to quantify the vibration present within drone flight, study its effect on the quality of the medical insulin through live flight trials, and compare the effects of vibration from drone flight with traditional road transport. Three trials took place in which insulin ampoules and mock blood stocks were transported to site and flown using industry standard packaging by a fixed-wing or a multi-copter drone. Triaxial vibration measurements were acquired, both in-flight and during road transit, from which overall levels and frequency spectra were derived. British Pharmacopeia quality tests were undertaken in which the UV spectra of the flown insulin samples were compared to controls of known turbidity. In-flight vibration levels in both the drone types exceeded road induced levels by up to a factor of three, and predominant vibration occurred at significantly higher frequencies. Flown samples gave clear insulin solutions that met the British Pharmacopoeia specification, and no aggregation of insulin was detected.


Sign in / Sign up

Export Citation Format

Share Document