Organic Aerosols in South and East Asia: Composition and Sources

Author(s):  
Chandra Mouli Pavuluri ◽  
Kimitaka Kawamura
Keyword(s):  
2009 ◽  
Vol 9 (3) ◽  
pp. 13859-13888
Author(s):  
G. Wang ◽  
K. Kawamura ◽  
M. Xie ◽  
S. Hu ◽  
S. Gao ◽  
...  

Abstract. Size-segregated (9 stages) n-alkanes, polycyclic aromatic hydrocarbons (PAHs) and hopanes in the urban (Baoji city in inland China), mountain (Mt. Tai in east coastal China) and marine (Okinawa Island, Japan) atmospheres over East Asia were studied using a GC/MS technique. Concentrations of n-alkanes (1698±568 ng m−3 in winter and 487±145 ng m−3 in spring), PAHs (536±80 and 161±39 ng m−3), and hopanes (65±24 and 20±2.4 ng m−3) in the urban air are 1–2 orders of magnitude higher than those in the mountain aerosols and 2–3 orders of magnitude higher than those in the marine samples. Mass ratios of n-alkanes, PAHs and hopanes clearly demonstrate coal-burning emissions as the major source of the determined organic aerosols. Size distributions of fossil fuel derived n-alkane, PAHs and hopanes were found as a unimodal in most cases, peaking at 0.7–1.1 μm size. In contrast, plant wax derived n-alkanes present a bimodal distribution with two peaks at the sizes of 0.7–1.1 μm and >4.7 μm in the summer mountain and spring marine samples. Among the three types of samples, geometric mean diameter (GMD) of the determined organics in fine mode (<2.1 μm) was the smallest (av. 0.63 μm in spring) in the urban samples and the largest (1.01 μm) in the marine samples, whereas the GMD in coarse mode (≥2.1 μm) was smallest (3.48 μm) in the marine aerosols and largest (4.04 μm) in the urban aerosols. The fine mode of GMDs in the urban and mountain samples were larger in winter than in spring and summer. Moreover, GMDs of 3- and 4-ring PAHs were larger than 5- and 6-ring PAHs in the three types of atmospheres. Such differences in GMDs may be interpreted by coagulation and repartitioning of organic compound during a long range transport from the inland continent to the marine site, suggesting that the size changes arising from these physical processes must be included in climate models in relevant to organic aerosols.


2021 ◽  
Vol 21 (22) ◽  
pp. 16775-16791
Author(s):  
Shixian Zhai ◽  
Daniel J. Jacob ◽  
Jared F. Brewer ◽  
Ke Li ◽  
Jonathan M. Moch ◽  
...  

Abstract. Geostationary satellite measurements of aerosol optical depth (AOD) over East Asia from the Geostationary Ocean Color Imager (GOCI) and Advanced Himawari Imager (AHI) instruments can augment surface monitoring of fine particulate matter (PM2.5) air quality, but this requires better understanding of the AOD–PM2.5 relationship. Here we use the GEOS-Chem chemical transport model to analyze the critical variables determining the AOD–PM2.5 relationship over East Asia by simulation of observations from satellite, aircraft, and ground-based datasets. This includes the detailed vertical aerosol profiling over South Korea from the KORUS-AQ aircraft campaign (May–June 2016) with concurrent ground-based PM2.5 composition, PM10, and AERONET AOD measurements. The KORUS-AQ data show that 550 nm AOD is mainly contributed by sulfate–nitrate–ammonium (SNA) and organic aerosols in the planetary boundary layer (PBL), despite large dust concentrations in the free troposphere, reflecting the optically effective size and high hygroscopicity of the PBL aerosols. We updated SNA and organic aerosol size distributions in GEOS-Chem to represent aerosol optical properties over East Asia by using in situ measurements of particle size distributions from KORUS-AQ. We find that SNA and organic aerosols over East Asia have larger size (number median radius of 0.11 µm with geometric standard deviation of 1.4) and 20 % larger mass extinction efficiency as compared to aerosols over North America (default setting in GEOS-Chem). Although GEOS-Chem is successful in reproducing the KORUS-AQ vertical profiles of aerosol mass, its ability to link AOD to PM2.5 is limited by under-accounting of coarse PM and by a large overestimate of nighttime PM2.5 nitrate. The GOCI–AHI AOD data over East Asia in different seasons show agreement with AERONET AODs and a spatial distribution consistent with surface PM2.5 network data. The AOD observations over North China show a summer maximum and winter minimum, opposite in phase to surface PM2.5. This is due to low PBL depths compounded by high residential coal emissions in winter and high relative humidity (RH) in summer. Seasonality of AOD and PM2.5 over South Korea is much weaker, reflecting weaker variation in PBL depth and lack of residential coal emissions.


2020 ◽  
Author(s):  
Jiawei Li ◽  
Zhiwei Han ◽  
Pingqing Fu ◽  
Xiaohong Yao

Abstract. Organic aerosols from marine sources over the western Pacific Ocean of East Asia were investigated by using an online-coupled regional chemistry-climate model RIEMS-Chem for the entire year 2014. Model evaluation against a wide variety of observations from research cruises and in-situ measurements demonstrated a good skill of the model in simulating temporal variation and spatial distribution of particulate matter with aerodynamic diameter less than 2.5 μm and 10 μm (PM2.5 and PM10), black carbon (BC), organic carbon (OC), and aerosol optical depth (AOD) in marine atmosphere. The inclusion of marine organic aerosols apparently improved model performance on OC aerosol concentration, reducing the normalized mean biases from −19 % to −13 % (KEXUE-1 cruise) and −21 % to −3 % (Huaniao Island) over the marginal seas of east China, and from 33 % to 5 % (Dongfanghong II cruise) and from −13 % to 3 % (Chichijima Island) over remote oceans of the western Pacific. It was found that marine primary organic aerosol (MPOA) accounted for majority of marine organic aerosol (MOA) mass in the western Pacific. High MPOA emission mainly occurred over the marginal seas of China and remote oceans of the western Pacific northeast of Japan. The seasonality of MPOA emission is determined by the combined effect of Chlorophyll-a (Chl-a) concentration and sea salt emission flux, exhibiting the maximum in autumn and the minimum in summer in terms of domain average over the western Pacific. The annual mean MPOA emission rate was estimated to be 0.16×10−2 μg m−2 s−1, yielding an annual MPOA emission of 0.78 Tg yr−1 over the western Pacific, which potentially accounted for approximately 8~12 % of global annual MPOA emission. The regional and annual mean near surface MOA concentration was estimated to be 0.27 μg m−3 over the western Pacific, with the maximum in spring and the minimum in winter, resulting from the combined effect of MPOA emission, dry and wet depositions. Marine secondary organic aerosol (MSOA) produced by marine biogenic VOCs (isoprene and monoterpene) was approximately 1~2 orders of magnitude lower than MPOA. The simulated annual and regional mean MSOA was 2.2 ng m−3, with the maximum daily mean value up to 28 ng m−3 over the western Pacific in summer. MSOA had a distinct summer maximum and winter minimum in the western Pacific, generally consistent with the seasonality of marine isoprene emission flux. In terms of annual mean, 26 % of the total organic aerosol concentration was contributed by MOA over the western Pacific, with an increasing importance of MOA from the marginal seas of China (13 %) to remote oceans of the western Pacific (42 %). MOA induced a minor direct radiative effect (DRE), with a domain and annual mean of −0.21 W m−2 at the top of the atmosphere (TOA) under all-sky condition over the western Pacific, whereas the mean indirect radiative effect (IRE) due to MOA at TOA (IREMOA) was estimated to be −4.2 W m−2. MSOA contributed approximately 6 % of the annual and regional mean IREMOA over the western Pacific, with the maximum seasonal mean contribution up to 14 % in summer, which meant MPOA dominated the IREMOA. It was noteworthy that the IREMOA accounted for approximately 32 % of that due to all aerosols over the western Pacific of East Asia, indicating an important role of MOA in perturbing cloud properties and shortwave radiation in this region.


2017 ◽  
Author(s):  
Charles Holcombe
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document