Transfer Learning-Based Case Base Preparation for a Case-Based Reasoning-Based Decision Making Support Model in the Educational Domain

Author(s):  
Pham Thanh Tri ◽  
Vo Thi Ngoc Chau ◽  
Nguyen Hua Phung
2012 ◽  
Vol 629 ◽  
pp. 859-863
Author(s):  
Xue Song Tang ◽  
Yu Yang ◽  
Zhan Jun Niu ◽  
Bo Qiao

In this paper, we use the case-based reasoning method to build the battlefield and military unit hierarchy reasoning model. The military unit level and multiple military entities at different levels were compared with the case base, said that the characteristic element of the battlefield and military units were collected applied to different levels in the case base , its results are provided automatically for each output and modify. We may construct the evolution model of a battlefield situation for analysis, reasoning and prediction, so as to provide the basis to commanders for decision-making.


Author(s):  
Guanghsu A. Chang ◽  
Cheng-Chung Su ◽  
John W. Priest

Artificial intelligence (AI) approaches have been successfully applied to many fields. Among the numerous AI approaches, Case-Based Reasoning (CBR) is an approach that mainly focuses on the reuse of knowledge and experience. However, little work is done on applications of CBR to improve assembly part design. Similarity measures and the weight of different features are crucial in determining the accuracy of retrieving cases from the case base. To develop the weight of part features and retrieve a similar part design, the research proposes using Genetic Algorithms (GAs) to learn the optimum feature weight and employing nearest-neighbor technique to measure the similarity of assembly part design. Early experimental results indicate that the similar part design is effectively retrieved by these similarity measures.


Author(s):  
Jose M. Juarez ◽  
Susan Craw ◽  
J. Ricardo Lopez-Delgado ◽  
Manuel Campos

Case-Based Reasoning (CBR) learns new knowledge from data and so can cope with changing environments. CBR is very different from model-based systems since it can learn incrementally as new data is available, storing new cases in its case-base. This means that it can benefit from readily available new data, but also case-base maintenance (CBM) is essential to manage the cases, deleting and compacting the case-base. In the 50th anniversary of CNN (considered the first CBM algorithm), new CBM methods are proposed to deal with the new requirements of Big Data scenarios. In this paper, we present an accessible historic perspective of CBM and we classify and analyse the most recent approaches to deal with these requirements.


2019 ◽  
Vol 25 (2) ◽  
pp. 213-235 ◽  
Author(s):  
Soumava Boral ◽  
Sanjay Kumar Chaturvedi ◽  
V.N.A. Naikan

Purpose Usually, the machinery in process plants is exposed to harsh and uncontrolled environmental conditions. Even after taking different types of preventive measures to detect and isolate the faults at the earliest possible opportunity becomes a complex decision-making process that often requires experts’ opinions and judicious decisions. The purpose of this paper is to propose a framework to detect, isolate and to suggest appropriate maintenance tasks for large-scale complex machinery (i.e. gearboxes of steel processing plant) in a simplified and structured manner by utilizing the prior fault histories available with the organization in conjunction with case-based reasoning (CBR) approach. It is also demonstrated that the proposed framework can easily be implemented by using today’s graphical user interface enabled tools such as Microsoft Visual Basic and similar. Design/methodology/approach CBR, an amalgamated domain of artificial intelligence and human cognitive process, has been applied to carry out the task of fault detection and isolation (FDI). Findings The equipment failure history and actions taken along with the pertinent health indicators are sufficient to detect and isolate the existing fault(s) and to suggest proper maintenance actions to minimize associated losses. The complex decision-making process of maintaining such equipment can exploit the principle of CBR and overcome the limitations of the techniques such as artificial neural networks and expert systems. The proposed CBR-based framework is able to provide inference with minimum or even with some missing information to take appropriate actions. This proposed framework would alleviate from the frequent requirement of expert’s interventions and in-depth knowledge of various analysis techniques expected to be known to process engineers. Originality/value The CBR approach has demonstrated its usefulness in many areas of practical applications. The authors perceive its application potentiality to FDI with suggested maintenance actions to alleviate an end-user from the frequent requirement of an expert for diagnosis or inference. The proposed framework can serve as a useful tool/aid to the process engineers to detect and isolate the fault of large-scale complex machinery with suggested actions in a simplified way.


Sign in / Sign up

Export Citation Format

Share Document