Deep Learning Architecture for High-Level Feature Generation Using Stacked Auto Encoder for Business Intelligence

Author(s):  
Vikas Singh ◽  
Nishchal K. Verma
2021 ◽  
Vol 13 (3) ◽  
pp. 72
Author(s):  
Shengbo Chen ◽  
Hongchang Zhang ◽  
Zhou Lei

Person re-identification (ReID) plays a significant role in video surveillance analysis. In the real world, due to illumination, occlusion, and deformation, pedestrian features extraction is the key to person ReID. Considering the shortcomings of existing methods in pedestrian features extraction, a method based on attention mechanism and context information fusion is proposed. A lightweight attention module is introduced into ResNet50 backbone network equipped with a small number of network parameters, which enhance the significant characteristics of person and suppress irrelevant information. Aiming at the problem of person context information loss due to the over depth of the network, a context information fusion module is designed to sample the shallow feature map of pedestrians and cascade with the high-level feature map. In order to improve the robustness, the model is trained by combining the loss of margin sample mining with the loss function of cross entropy. Experiments are carried out on datasets Market1501 and DukeMTMC-reID, our method achieves rank-1 accuracy of 95.9% on the Market1501 dataset, and 90.1% on the DukeMTMC-reID dataset, outperforming the current mainstream method in case of only using global feature.


2021 ◽  
Vol 54 (2) ◽  
pp. 1-35
Author(s):  
Chenning Li ◽  
Zhichao Cao ◽  
Yunhao Liu

With the development of the Internet of Things (IoT), many kinds of wireless signals (e.g., Wi-Fi, LoRa, RFID) are filling our living and working spaces nowadays. Beyond communication, wireless signals can sense the status of surrounding objects, known as wireless sensing , with their reflection, scattering, and refraction while propagating in space. In the last decade, many sophisticated wireless sensing techniques and systems were widely studied for various applications (e.g., gesture recognition, localization, and object imaging). Recently, deep Artificial Intelligence (AI), also known as Deep Learning (DL), has shown great success in computer vision. And some works have initially proved that deep AI can benefit wireless sensing as well, leading to a brand-new step toward ubiquitous sensing. In this survey, we focus on the evolution of wireless sensing enhanced by deep AI techniques. We first present a general workflow of Wireless Sensing Systems (WSSs) which consists of signal pre-processing, high-level feature, and sensing model formulation. For each module, existing deep AI-based techniques are summarized, further compared with traditional approaches. Then, we provide a view of issues and challenges induced by combining deep AI and wireless sensing together. Finally, we discuss the future trends of deep AI to enable ubiquitous wireless sensing.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4045
Author(s):  
Alessandro Sassu ◽  
Jose Francisco Saenz-Cogollo ◽  
Maurizio Agelli

Edge computing is the best approach for meeting the exponential demand and the real-time requirements of many video analytics applications. Since most of the recent advances regarding the extraction of information from images and video rely on computation heavy deep learning algorithms, there is a growing need for solutions that allow the deployment and use of new models on scalable and flexible edge architectures. In this work, we present Deep-Framework, a novel open source framework for developing edge-oriented real-time video analytics applications based on deep learning. Deep-Framework has a scalable multi-stream architecture based on Docker and abstracts away from the user the complexity of cluster configuration, orchestration of services, and GPU resources allocation. It provides Python interfaces for integrating deep learning models developed with the most popular frameworks and also provides high-level APIs based on standard HTTP and WebRTC interfaces for consuming the extracted video data on clients running on browsers or any other web-based platform.


Author(s):  
Yixiao Li ◽  
Honghao Liu ◽  
Huan Wang ◽  
Zhiliang Liu

Author(s):  
Delia Velasco-Montero ◽  
Jorge Fernández-Berni ◽  
Ricardo Carmona-Galán ◽  
Ángel Rodríguez-Vázquez
Keyword(s):  

2018 ◽  
Vol 10 (11) ◽  
pp. 1768 ◽  
Author(s):  
Hui Yang ◽  
Penghai Wu ◽  
Xuedong Yao ◽  
Yanlan Wu ◽  
Biao Wang ◽  
...  

Building extraction from very high resolution (VHR) imagery plays an important role in urban planning, disaster management, navigation, updating geographic databases, and several other geospatial applications. Compared with the traditional building extraction approaches, deep learning networks have recently shown outstanding performance in this task by using both high-level and low-level feature maps. However, it is difficult to utilize different level features rationally with the present deep learning networks. To tackle this problem, a novel network based on DenseNets and the attention mechanism was proposed, called the dense-attention network (DAN). The DAN contains an encoder part and a decoder part which are separately composed of lightweight DenseNets and a spatial attention fusion module. The proposed encoder–decoder architecture can strengthen feature propagation and effectively bring higher-level feature information to suppress the low-level feature and noises. Experimental results based on public international society for photogrammetry and remote sensing (ISPRS) datasets with only red–green–blue (RGB) images demonstrated that the proposed DAN achieved a higher score (96.16% overall accuracy (OA), 92.56% F1 score, 90.56% mean intersection over union (MIOU), less training and response time and higher-quality value) when compared with other deep learning methods.


Author(s):  
Jwalin Bhatt ◽  
Khurram Azeem Hashmi ◽  
Muhammad Zeshan Afzal ◽  
Didier Stricker

In any document, graphical elements like tables, figures, and formulas contain essential information. The processing and interpretation of such information require specialized algorithms. Off-the-shelf OCR components cannot process this information reliably. Therefore, an essential step in document analysis pipelines is to detect these graphical components. It leads to a high-level conceptual understanding of the documents that makes digitization of documents viable. Since the advent of deep learning, the performance of deep learning-based object detection has improved many folds. In this work, we outline and summarize the deep learning approaches for detecting graphical page objects in the document images. Therefore, we discuss the most relevant deep learning-based approaches and state-of-the-art graphical page object detection in document images. This work provides a comprehensive understanding of the current state-of-the-art and related challenges. Furthermore, we discuss leading datasets along with the quantitative evaluation. Moreover, it discusses briefly the promising directions that can be utilized for further improvements.


2018 ◽  
Author(s):  
D. Kuhner ◽  
L.D.J. Fiederer ◽  
J. Aldinger ◽  
F. Burget ◽  
M. Völker ◽  
...  

AbstractAs autonomous service robots become more affordable and thus available for the general public, there is a growing need for user-friendly interfaces to control these systems. Control interfaces typically get more complicated with increasing complexity of the robotic tasks and the environment. Traditional control modalities as touch, speech or gesture commands are not necessarily suited for all users. While non-expert users can make the effort to familiarize themselves with a robotic system, paralyzed users may not be capable of controlling such systems even though they need robotic assistance most. In this paper, we present a novel framework, that allows these users to interact with a robotic service assistant in a closed-loop fashion, using only thoughts. The system is composed of several interacting components: non-invasive neuronal signal recording and co-adaptive deep learning which form the brain-computer interface (BCI), high-level task planning based on referring expressions, navigation and manipulation planning as well as environmental perception. We extensively evaluate the BCI in various tasks, determine the performance of the goal formulation user interface and investigate its intuitiveness in a user study. Furthermore, we demonstrate the applicability and robustness of the system in real world scenarios, considering fetch-and-carry tasks and tasks involving human-robot interaction. As our results show, the system is capable of adapting to frequent changes in the environment and reliably accomplishes given tasks within a reasonable amount of time. Combined with high-level planning using referring expressions and autonomous robotic systems, interesting new perspectives open up for non-invasive BCI-based human-robot interactions.


Sign in / Sign up

Export Citation Format

Share Document