Generalized Bidirectional Limited Magnitude Error Correcting Code for MLC Flash Memories

Author(s):  
Akram Hussain ◽  
Xinchun Yu ◽  
Yuan Luo
Author(s):  
Anxiao Jiang ◽  
Yue Li ◽  
E. E. Gad ◽  
M. Langberg ◽  
J. Bruck

Author(s):  
Xuan ZHANG ◽  
Xiaopeng JIAO ◽  
Yu-Cheng HE ◽  
Jianjun MU
Keyword(s):  

Author(s):  
Halit Dogan ◽  
Md Mahbub Alam ◽  
Navid Asadizanjani ◽  
Sina Shahbazmohamadi ◽  
Domenic Forte ◽  
...  

Abstract X-ray tomography is a promising technique that can provide micron level, internal structure, and three dimensional (3D) information of an integrated circuit (IC) component without the need for serial sectioning or decapsulation. This is especially useful for counterfeit IC detection as demonstrated by recent work. Although the components remain physically intact during tomography, the effect of radiation on the electrical functionality is not yet fully investigated. In this paper we analyze the impact of X-ray tomography on the reliability of ICs with different fabrication technologies. We perform a 3D imaging using an advanced X-ray machine on Intel flash memories, Macronix flash memories, Xilinx Spartan 3 and Spartan 6 FPGAs. Electrical functionalities are then tested in a systematic procedure after each round of tomography to estimate the impact of X-ray on Flash erase time, read margin, and program operation, and the frequencies of ring oscillators in the FPGAs. A major finding is that erase times for flash memories of older technology are significantly degraded when exposed to tomography, eventually resulting in failure. However, the flash and Xilinx FPGAs of newer technologies seem less sensitive to tomography, as only minor degradations are observed. Further, we did not identify permanent failures for any chips in the time needed to perform tomography for counterfeit detection (approximately 2 hours).


2020 ◽  
Vol 59 (SL) ◽  
pp. SLLC01 ◽  
Author(s):  
Tomoki Murota ◽  
Toshiki Mimura ◽  
Ploybussara Gomasang ◽  
Shinji Yokogawa ◽  
Kazuyoshi Ueno

2004 ◽  
Vol 341 (1-2) ◽  
pp. 89-109 ◽  
Author(s):  
Elebeoba E. May ◽  
Mladen A. Vouk ◽  
Donald L. Bitzer ◽  
David I. Rosnick

Author(s):  
S. Gerardin ◽  
M. Bagatin ◽  
A. Paccagnella ◽  
S. Beltrami ◽  
A. Costantino ◽  
...  

Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 789
Author(s):  
Emanuele Bellini ◽  
Chiara Marcolla ◽  
Nadir Murru

In addition to their usefulness in proving one’s identity electronically, identification protocols based on zero-knowledge proofs allow designing secure cryptographic signature schemes by means of the Fiat–Shamir transform or other similar constructs. This approach has been followed by many cryptographers during the NIST (National Institute of Standards and Technology) standardization process for quantum-resistant signature schemes. NIST candidates include solutions in different settings, such as lattices and multivariate and multiparty computation. While error-correcting codes may also be used, they do not provide very practical parameters, with a few exceptions. In this manuscript, we explored the possibility of using the error-correcting codes proposed by Stakhov in 2006 to design an identification protocol based on zero-knowledge proofs. We showed that this type of code offers a valid alternative in the error-correcting code setting to build such protocols and, consequently, quantum-resistant signature schemes.


Sign in / Sign up

Export Citation Format

Share Document