A Network Architecture for Multi-Multi-Instance Learning

Author(s):  
Alessandro Tibo ◽  
Paolo Frasconi ◽  
Manfred Jaeger
Keyword(s):  
2020 ◽  
Vol 2020 (10) ◽  
pp. 54-62
Author(s):  
Oleksii VASYLIEV ◽  

The problem of applying neural networks to calculate ratings used in banking in the decision-making process on granting or not granting loans to borrowers is considered. The task is to determine the rating function of the borrower based on a set of statistical data on the effectiveness of loans provided by the bank. When constructing a regression model to calculate the rating function, it is necessary to know its general form. If so, the task is to calculate the parameters that are included in the expression for the rating function. In contrast to this approach, in the case of using neural networks, there is no need to specify the general form for the rating function. Instead, certain neural network architecture is chosen and parameters are calculated for it on the basis of statistical data. Importantly, the same neural network architecture can be used to process different sets of statistical data. The disadvantages of using neural networks include the need to calculate a large number of parameters. There is also no universal algorithm that would determine the optimal neural network architecture. As an example of the use of neural networks to determine the borrower's rating, a model system is considered, in which the borrower's rating is determined by a known non-analytical rating function. A neural network with two inner layers, which contain, respectively, three and two neurons and have a sigmoid activation function, is used for modeling. It is shown that the use of the neural network allows restoring the borrower's rating function with quite acceptable accuracy.


2020 ◽  
Vol 2020 (10) ◽  
pp. 181-1-181-7
Author(s):  
Takahiro Kudo ◽  
Takanori Fujisawa ◽  
Takuro Yamaguchi ◽  
Masaaki Ikehara

Image deconvolution has been an important issue recently. It has two kinds of approaches: non-blind and blind. Non-blind deconvolution is a classic problem of image deblurring, which assumes that the PSF is known and does not change universally in space. Recently, Convolutional Neural Network (CNN) has been used for non-blind deconvolution. Though CNNs can deal with complex changes for unknown images, some CNN-based conventional methods can only handle small PSFs and does not consider the use of large PSFs in the real world. In this paper we propose a non-blind deconvolution framework based on a CNN that can remove large scale ringing in a deblurred image. Our method has three key points. The first is that our network architecture is able to preserve both large and small features in the image. The second is that the training dataset is created to preserve the details. The third is that we extend the images to minimize the effects of large ringing on the image borders. In our experiments, we used three kinds of large PSFs and were able to observe high-precision results from our method both quantitatively and qualitatively.


2019 ◽  
Author(s):  
Rajavelsamy R ◽  
Debabrata Das

5G promises to support new level of use cases that will deliver a better user experience. The 3rd Generation Partnership Project (3GPP) [1] defined 5G system introduced fundamental changes on top of its former cellular systems in several design areas, including security. Unlike in the legacy systems, the 5G architecture design considers Home control enhancements for roaming customer, tight collaboration with the 3rd Party Application servers, Unified Authentication framework to accommodate various category of devices and services, enhanced user privacy, and secured the new service based core network architecture. Further, 3GPP is investigating the enhancements to the 5G security aspects to support longer security key lengths, False Base station detection and wireless backhaul in the Phase-2 of 5G standardization [2]. This paper provides the key enhancements specified by the 3GPP for 5G system, particularly the differences to the 4G system and the rationale behind the decisions.


2018 ◽  
Author(s):  
Phanidra Palagummi ◽  
Vedant Somani ◽  
Krishna M. Sivalingam ◽  
Balaji Venkat

Networking connectivity is increasingly based on wireless network technologies, especially in developing nations where the wired network infrastructure is not accessible to a large segment of the population. Wireless data network technologies based on 2G and 3G are quite common globally; 4G-based deployments are on the rise during the past few years. At the same time, the increasing high-bandwidth and low-latency requirements of mobile applications has propelled the Third Generation Partnership Project (3GPP) standards organization to develop standards for the next generation of mobile networks, based on recent advances in wireless communication technologies. This standard is called the Fifth Generation (5G) wireless network standard. This paper presents a high-level overview of the important architectural components, of the advanced communication technologies, of the advanced networking technologies such as Network Function Virtualization and other important aspects that are part of the 5G network standards. The paper also describes some of the common future generation applications that require low-latency and high-bandwidth communications.


Author(s):  
Lutfi Syafirullah ◽  
Hidayat Muhammad Nur ◽  
Vadlya Ma'arif

Information technology integration is expected to be able to accommodate the ease and improvement in supporting database platforms through intranet and internet infrastructure. Integration is intended to blend desktop and web database systems. Medical Checkup Purwokerto is a designated place to facilitate the checkup health of the official PJTKI Banyumas Disnaker BNP2TKI. The current system, which is a check-up application, is carried out by prospective Indonesian Workers or Medical checkup units, covering many processes including registration, health checks, types, results, payments and reports. There was a buildup of operational activities Clinical work on a daily basis, by the administrator of the medical record so that management aimed at developing a web-based clinical information system includes the scope of the processed database components, access authorization, and security. The method used is the software development life cycle (SDLC) with the Evolutionary Prototype Model. Results, patient data can be integrated as a whole process flow with a client-server network architecture


Sign in / Sign up

Export Citation Format

Share Document