Cloud Remote Sensing by Active Sensors: New Perspectives from CloudSat, CALIPSO and EarthCARE

Author(s):  
Hajime Okamoto ◽  
Kaori Sato
2019 ◽  
Vol 38 (7) ◽  
pp. 554-555
Author(s):  
Yongyi Li ◽  
Roice Nelson ◽  
William Jeffery ◽  
Douglas Foster ◽  
Dominique Dubucq ◽  
...  

Remote sensing detects and monitors the physical and spatial characteristics of the earth's oceans, surface, and atmosphere by measuring the reflected or scattered downwelling or emitted upwelling electromagnetic radiation or acoustic signal using passive or active sensors at a distance. It plays an important role in today's energy and environmental sustainability efforts. Remote sensing from spaceborne, airborne, terrestrial, and marine platforms has long been used in hydrocarbon exploration to map surface geology, topography, and hydrocarbon seepages, as well as to evaluate environments that relate to petroleum industry activities. Since the mid-2000s, remote sensing technologies have undergone substantial advances in data acquisition, processing, and interpretation. In the last decade, rapid advances in satellite systems, unmanned autonomous vehicles (UAVs), sensors, and scale of surveys have further expanded applications.


Author(s):  
Nathalie Pettorelli

This chapter seeks to provide a quick introduction to satellite remote sensing. It starts with a set of definitions, thereby to explain the differences between Earth observations, remote sensing, and satellite remote sensing. It then goes on to describe how satellite remote sensing works, and what the differences between passive and active sensors are. An introduction to the main sensors currently on board active civilian Earth observation satellites is provided, together with details on their key specifications. The complex nature of satellite data, as well as the tools required to manipulate and analyse them are discussed. The chapter ends with a presentation of the main issues to be aware of when dealing with satellite data, and a look at the coming sensors and datasets that will soon expand opportunities for satellite data to inform environmental management.


2021 ◽  
Author(s):  
Y. Anpilova ◽  
O. Hordiienko ◽  
V. Horbulin ◽  
O. Trofymchuk ◽  
Y. Yakovliev

2021 ◽  
Vol 13 (9) ◽  
pp. 1833
Author(s):  
Jarosław Chormański ◽  
Barbara Nowicka ◽  
Aleksander Wieckowski ◽  
Maurycy Ciupak ◽  
Jacek Jóźwiak ◽  
...  

In this work, we proposed to include remote sensing techniques as a part of the methodology for natural lake bottom mapping, with a focus on the littoral zone. Due to the inaccessibility of this zone caused by dense vegetation, measurements of the lake bottom and the coastline are also difficult to perform using traditional methods. The authors of this paper present, discuss and verify the applicability of remote sensing active sensors as a tool for measurements in the shore zone of a lake. The single-beam Lowrance HDS-7 ComboGPS echosounder with an 83/200 kHz transducer and a two-beam LiDAR RIEGL VQ-1560i-DW scanner have been used for reservoir bottom measurements of two neighboring lakes, which differ in terms of water transparency. The research has found a strong correlation between both sonar and LiDAR for mapping the bottom depth in a range up to 1.6 m, and allowed LiDAR mapping of approximately 20% of the highly transparent lake, but it has not been found to be useful in water with low transparency. In the light of the conducted research, both devices, sonar and LiDAR, have potential for complementary use by fusing both methods: the sonar for mapping of the sublittoral and the pelagic zone, and the LiDAR for mapping of the littoral zone, overcoming limitation related to vegetation in the lake shore zone.


2019 ◽  
pp. 1014-1025
Author(s):  
Muhammad Tauhidur Rahman

Immediately following a natural disaster, it is imperative to accurately assess the damages caused by the disaster for effective rescue and relief operations. Passive remote sensing imageries have been analyzed and used for over four decades for such assessments. However, they do have their limitations including inability to collect data during violent weather conditions, medium to low spatial resolution, and assessing areas and pixels on a damages/no damage basis. Recent advances in active remote sensing data collection methods can resolve some of these limitations. In this chapter, the basic theories and processing techniques of active remote sensing data is first discussed. It then provides some of the advantages and limitations of using active remote sensing data for disaster damage assessments. Finally, the chapter concludes by discussing how data from active sensors are used to assess damages from various types of natural disasters.


2020 ◽  
Vol 12 (15) ◽  
pp. 2491 ◽  
Author(s):  
Kutalmis Saylam ◽  
Aaron R. Averett ◽  
Lucie Costard ◽  
Brad D. Wolaver ◽  
Sarah Robertson

Remote sensing technology enables detecting, acquiring, and recording certain information about objects and locations from distances relative to their geographic locations. Airborne Lidar bathymetry (ALB) is an active, non-imaging, remote sensing technology for measuring the depths of shallow and relatively transparent water bodies using light beams from an airborne platform. In this study, we acquired Lidar datasets using near-infrared and visible (green) wavelength with the Leica Airborne Hydrography AB Chiroptera-I system over the Devils River basin of southwestern Texas. Devils River is a highly groundwater-dependent stream that flows 150 km from source springs to Lake Amistad on the lower Rio Grande. To improve spatially distributed stream bathymetry in aquatic habitats of species of state and federal conservation interest, we conducted supplementary water-depth observations using other remote sensing technologies integrated with the airborne Lidar datasets. Ground penetrating radar (GPR) mapped the river bottom where vegetation impeded other active sensors in attaining depth measurements. We confirmed the accuracy of bathymetric Lidar datasets with a differential global positioning system (GPS) and compared the findings to sonar and GPR measurements. The study revealed that seamless bathymetric and geomorphic mapping of karst environments in complex settings (e.g., aquatic vegetation, entrained air bubbles, riparian zone obstructions) require the integration of a variety of terrestrial and remotely operated survey methods. We apply this approach to Devils River of Texas. However, the methods are applicable to similar streams globally.


1987 ◽  
Vol 18 (1) ◽  
pp. 1-20 ◽  
Author(s):  
P. Y. Bernier

This review explores from a user's viewpoint the possibilities and limitations of microwave-based techniques for the remote sensing of snowpack properties. Mapping of dry snowpacks and detection of melt onset can be achieved with combinations of readings taken at different frequencies with passive microwave sensors. A combination of readings from both passive and active sensors coupled with ground truth data will be required to estimate snow water equivalent under most snow conditions. Snowpack structure and overlying vegetation still present major problems in the estimation of snowpack water equivalent from microwave remote sensing devices.


Sign in / Sign up

Export Citation Format

Share Document