scholarly journals Basic Building Blocks for Clinical Text Processing

2018 ◽  
pp. 55-82
Author(s):  
Hercules Dalianis
2018 ◽  
Vol 22 (4) ◽  
Author(s):  
Hiep Nguyen Minh ◽  
Huyen Nguyen Thi Minh ◽  
Quyen Ngo The

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Leeanne Carey ◽  
Alistair Walsh ◽  
Achini Adikari ◽  
Peter Goodin ◽  
Damminda Alahakoon ◽  
...  

Aim. Neural plastic changes are experience and learning dependent, yet exploiting this knowledge to enhance clinical outcomes after stroke is in its infancy. Our aim was to search the available evidence for the core concepts of neuroplasticity, stroke recovery, and learning; identify links between these concepts; and identify and review the themes that best characterise the intersection of these three concepts. Methods. We developed a novel approach to identify the common research topics among the three areas: neuroplasticity, stroke recovery, and learning. A concept map was created a priori, and separate searches were conducted for each concept. The methodology involved three main phases: data collection and filtering, development of a clinical vocabulary, and the development of an automatic clinical text processing engine to aid the process and identify the unique and common topics. The common themes from the intersection of the three concepts were identified. These were then reviewed, with particular reference to the top 30 articles identified as intersecting these concepts. Results. The search of the three concepts separately yielded 405,636 publications. Publications were filtered to include only human studies, generating 263,751 publications related to the concepts of neuroplasticity (n=6,498), stroke recovery (n=79,060), and learning (n=178,193). A cluster concept map (network graph) was generated from the results; indicating the concept nodes, strength of link between nodes, and the intersection between all three concepts. We identified 23 common themes (topics) and the top 30 articles that best represent the intersecting themes. A time-linked pattern emerged. Discussion and Conclusions. Our novel approach developed for this review allowed the identification of the common themes/topics that intersect the concepts of neuroplasticity, stroke recovery, and learning. These may be synthesised to advance a neuroscience-informed approach to stroke rehabilitation. We also identified gaps in available literature using this approach. These may help guide future targeted research.


2017 ◽  
Vol 24 (4) ◽  
pp. 841-844 ◽  
Author(s):  
Dina Demner-Fushman ◽  
Willie J Rogers ◽  
Alan R Aronson

Abstract MetaMap is a widely used named entity recognition tool that identifies concepts from the Unified Medical Language System Metathesaurus in text. This study presents MetaMap Lite, an implementation of some of the basic MetaMap functions in Java. On several collections of biomedical literature and clinical text, MetaMap Lite demonstrated real-time speed and precision, recall, and F1 scores comparable to or exceeding those of MetaMap and other popular biomedical text processing tools, clinical Text Analysis and Knowledge Extraction System (cTAKES) and DNorm.


1997 ◽  
Vol 161 ◽  
pp. 23-47 ◽  
Author(s):  
Louis J. Allamandola ◽  
Max P. Bernstein ◽  
Scott A. Sandford

AbstractInfrared observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the building blocks of comets. Since comets are thought to be a major source of the volatiles on the primative earth, their organic inventory is of central importance to questions concerning the origin of life. Ices in molecular clouds contain the very simple molecules H2O, CH3OH, CO, CO2, CH4, H2, and probably some NH3and H2CO, as well as more complex species including nitriles, ketones, and esters. The evidence for these, as well as carbonrich materials such as polycyclic aromatic hydrocarbons (PAHs), microdiamonds, and amorphous carbon is briefly reviewed. This is followed by a detailed summary of interstellar/precometary ice photochemical evolution based on laboratory studies of realistic polar ice analogs. Ultraviolet photolysis of these ices produces H2, H2CO, CO2, CO, CH4, HCO, and the moderately complex organic molecules: CH3CH2OH (ethanol), HC(= O)NH2(formamide), CH3C(= O)NH2(acetamide), R-CN (nitriles), and hexamethylenetetramine (HMT, C6H12N4), as well as more complex species including polyoxymethylene and related species (POMs), amides, and ketones. The ready formation of these organic species from simple starting mixtures, the ice chemistry that ensues when these ices are mildly warmed, plus the observation that the more complex refractory photoproducts show lipid-like behavior and readily self organize into droplets upon exposure to liquid water suggest that comets may have played an important role in the origin of life.


Author(s):  
D.E. Brownlee ◽  
A.L. Albee

Comets are primitive, kilometer-sized bodies that formed in the outer regions of the solar system. Composed of ice and dust, comets are generally believed to be relic building blocks of the outer solar system that have been preserved at cryogenic temperatures since the formation of the Sun and planets. The analysis of cometary material is particularly important because the properties of cometary material provide direct information on the processes and environments that formed and influenced solid matter both in the early solar system and in the interstellar environments that preceded it.The first direct analyses of proven comet dust were made during the Soviet and European spacecraft encounters with Comet Halley in 1986. These missions carried time-of-flight mass spectrometers that measured mass spectra of individual micron and smaller particles. The Halley measurements were semi-quantitative but they showed that comet dust is a complex fine-grained mixture of silicates and organic material. A full understanding of comet dust will require detailed morphological, mineralogical, elemental and isotopic analysis at the finest possible scale. Electron microscopy and related microbeam techniques will play key roles in the analysis. The present and future of electron microscopy of comet samples involves laboratory study of micrometeorites collected in the stratosphere, in-situ SEM analysis of particles collected at a comet and laboratory study of samples collected from a comet and returned to the Earth for detailed study.


Author(s):  
Yeshayahu Talmon

To achieve complete microstructural characterization of self-aggregating systems, one needs direct images in addition to quantitative information from non-imaging, e.g., scattering or Theological measurements, techniques. Cryo-TEM enables us to image fluid microstructures at better than one nanometer resolution, with minimal specimen preparation artifacts. Direct images are used to determine the “building blocks” of the fluid microstructure; these are used to build reliable physical models with which quantitative information from techniques such as small-angle x-ray or neutron scattering can be analyzed.To prepare vitrified specimens of microstructured fluids, we have developed the Controlled Environment Vitrification System (CEVS), that enables us to prepare samples under controlled temperature and humidity conditions, thus minimizing microstructural rearrangement due to volatile evaporation or temperature changes. The CEVS may be used to trigger on-the-grid processes to induce formation of new phases, or to study intermediate, transient structures during change of phase (“time-resolved cryo-TEM”). Recently we have developed a new CEVS, where temperature and humidity are controlled by continuous flow of a mixture of humidified and dry air streams.


2016 ◽  
Vol 37 (3) ◽  
pp. 181-193 ◽  
Author(s):  
Aire Mill ◽  
Anu Realo ◽  
Jüri Allik

Abstract. Intraindividual variability, along with the more frequently studied between-person variability, has been argued to be one of the basic building blocks of emotional experience. The aim of the current study is to examine whether intraindividual variability in affect predicts tiredness in daily life. Intraindividual variability in affect was studied with the experience sampling method in a group of 110 participants (aged between 19 and 84 years) during 14 consecutive days on seven randomly determined occasions per day. The results suggest that affect variability is a stable construct over time and situations. Our findings also demonstrate that intraindividual variability in affect has a unique role in predicting increased levels of tiredness at the momentary level as well at the level of individuals.


Sign in / Sign up

Export Citation Format

Share Document