The Arctic and the Strategic Defence of North America: Resumption of the “Long Polar Watch”

Author(s):  
Rob Huebert
Keyword(s):  
2021 ◽  
Vol 23 (2) ◽  
pp. 5-7
Author(s):  
Jane C. Duffy

ASTIS offers over 83,000 records that provide freely available access to publications, including research and research projects, about Canada's north. This database is a product of the Arctic Institute of North America at the University of Calgary, Alberta, Canada which also maintains subsidiary regional, subject, and initiative-based databases. The subsidiary databases are all housed within and accessible through the main ASTIS database. Examples of the smaller databases include: ArcticNet Publications Database, the Nunavik Bibliography, and the Northern Granular Resources Bibliographic Database. ASTIS offers the ability to browse through its access points, including its own thesauri, thus permitting users to select and use a variety of free-text and controlled search terms.


Zootaxa ◽  
2021 ◽  
Vol 5027 (3) ◽  
pp. 351-375
Author(s):  
TANIA ESCALANTE ◽  
GERARDO RODRÍGUEZ-TAPIA ◽  
JUAN J. MORRONE

We provide a preliminary nomenclatural proposal and a digital map of the Nearctic region, based on published regionalizations, especially Dice (1943), and applying the International Code of Area Nomenclature. The Nearctic region is comprised of three subregions (one of them with two dominions), one transition zone and 29 provinces. The Arctic subregion, in northern North America and Greenland, includes the Eskimoan, Hudsonian, Aleutian and Sitkan provinces. The Western subregion, in western North America, includes the Californian dominion, with the Californian and Oregonian provinces; and the Rocky Mountain dominion, including the Montanian, Saskatchewan, Palusian, Artemisian, Coloradan, Kansan, Mohavian, Navahonian, Sonoran, Chihuahuan, Comanche, and Baja California provinces. The Alleghany subregion, in eastern North America, includes the Illinoian, Canadian, Carolinian, Texan, Austroriparian, and Tamaulipan provinces. The Mexican Transition Zone, situated in the area of overlap with the Neotropical region, includes the Sierra Madre Occidental, Sierra Madre Oriental, Transmexican Volcanic Belt, Sierra Madre del Sur and Chiapas Highlands provinces.  


1972 ◽  
Vol 50 (2) ◽  
pp. 378-380
Author(s):  
Gerald A. Mulligan ◽  
Clarence Frankton

Rumex arcticus Trautv., a species found on the mainland of northwestern North America and in northeastern U.S.S.R., contains tetraploid (2n = 40), dodecaploid (2n = 120), and perhaps 2n = 160 and 2n = 200 chromosome races. Most North American plants are tetraploid and are larger in size and have more compound and contiguous inflorescences than typical R. arcticus. Typical plants of R. arcticus occur in the arctic U.S.S.R., St. Lawrence Island in the Bering Sea, and at the tip of the Seward Peninsula of Alaska, and they all have 120 or more somatic chromosomes. High polyploid plants of R. arcticus that resemble North American tetraploids in appearance apparently occur on the Kamchatka Peninsula. These have been called R. kamtshadalus Komarov or R. arcticus var. kamtshadalus (Kom.) Rech. f. by some authors.


2013 ◽  
Vol 52 (11) ◽  
pp. 2396-2409 ◽  
Author(s):  
Lejiang Yu ◽  
Shiyuan Zhong ◽  
Xindi Bian ◽  
Warren E. Heilman ◽  
Joseph J. Charney

AbstractThe Haines index (HI) is a fire-weather index that is widely used as an indicator of the potential for dry, low-static-stability air in the lower atmosphere to contribute to erratic fire behavior or large fire growth. This study examines the interannual variability of HI over North America and its relationship to indicators of large-scale circulation anomalies. The results show that the first three HI empirical orthogonal function modes are related respectively to El Niño–Southern Oscillation (ENSO), the Arctic Oscillation (AO), and the interdecadal sea surface temperature variation over the tropical Pacific Ocean. During the negative ENSO phase, an anomalous ridge (trough) is evident over the western (eastern) United States, with warm/dry weather and more days with high HI values in the western and southeastern United States. During the negative phase of the AO, an anomalous trough is found over the western United States, with wet/cool weather and fewer days with high HI, while an anomalous ridge occurs over the southern United States–northern Mexico, with an increase in the number of days with high HI. After the early 1990s, the subtropical high over the eastern Pacific Ocean and the Bermuda high were strengthened by a wave train that was excited over the tropical western Pacific Ocean and resulted in warm/dry conditions over the southwestern United States and western Mexico and wet weather in the southeastern United States. The above conditions are reversed during the positive phase of ENSO and AO and before the early 1990s.


ZooKeys ◽  
2020 ◽  
Vol 984 ◽  
pp. 59-81
Author(s):  
Cory S. Sheffield ◽  
Ryan Oram ◽  
Jennifer M. Heron

The bumble bee (Hymenoptera, Apidae, Bombini, Bombus Latreille) fauna of the Nearctic and Palearctic regions are considered well known, with a few species occurring in both regions (i.e., with a Holarctic distribution), but much of the Arctic, especially in North America, remains undersampled or unsurveyed. Several bumble bee taxa have been described from northern North America, these considered either valid species or placed into synonymy with other taxa. However, some of these synonymies were made under the assumption of variable hair colour only, without detailed examination of other morphological characters (e.g., male genitalia, hidden sterna), and without the aid of molecular data. Recently, Bombus interacti Martinet, Brasero & Rasmont, 2019 was described from Alaska where it is considered endemic; based on both morphological and molecular data, it was considered a taxon distinct from B. lapponicus (Fabricius, 1793). Bombus interacti was also considered distinct from B. gelidus Cresson, 1878, a taxon from Alaska surmised to be a melanistic form of B. lapponicus sylvicola Kirby, 1837, the North American subspecies (Martinet et al. 2019). Unfortunately, Martinet et al. (2019) did not have DNA barcode sequences (COI) for females of B. interacti, but molecular data for a melanistic female specimen matching the DNA barcode sequence of the holotype of B. interacti have been available in the Barcodes of Life Data System (BOLD) since 2011. Since then, additional specimens have been obtained from across northern North America. Also unfortunate was that B. sylvicola var. johanseni Sladen, 1919, another melanistic taxon described from far northern Canada, was not considered. Bombus johanseni is here recognized as a distinct taxon from B. lapponicus sylvicola Kirby, 1837 (sensuMartinet et al. 2019) in the Nearctic region, showing the closest affinity to B. glacialis Friese, 1902 of the Old World. As the holotype male of B. interacti is genetically identical to material identified here as B. johanseni, it is placed into synonymy. Thus, we consider B. johanseni a widespread species occurring across arctic and subarctic North America in which most females are dark, with rarer pale forms (i.e., “interacti”) occurring in and seemingly restricted to Alaska. In addition to B. johanseni showing molecular affinities to B. glacialis of the Old World, both taxa also inhabit similar habitats in the arctic areas of both Nearctic and Palearctic, respectively. It is also likely that many of the specimens identified as B. lapponicus sylvicola from far northern Canada and Alaska might actually be B. johanseni, so that should be considered for future studies of taxonomy, distribution, and conservation assessment of North American bumble bees.


Author(s):  
Bruce A. Stein ◽  
Larry E. Morse

The Carolina hemlock (Tsuga caroliniana) survives in just a few rocky streambeds along the lower slopes of the Blue Ridge Mountains. Other species of hemlock abound across the United States, but none bear a close resemblance to this particular tree. The closest relatives of the Carolina hemlock, in fact, survive in only one other forest on Earth, some 7,000 miles away in Hubei province of eastern China. The forests of eastern Asia and eastern North America are so similar that if you were suddenly transported from one to the other, you would be hard-pressed to tell them apart. In the swift mountain streams rushing past these seemingly displaced hemlocks live a number of small, colorful fish known as darters. Darters are found only in North America and have evolved into a prolific variety of fishes. Up to 175 species inhabit U.S. waters, including the famous snail darter (Percina tanasi), which brought endangered species issues to the fore when it held up construction of the Tellico Dam on the Little Tennessee River. How is it that these two organisms, hemlock and darter, one with its closest relatives on the other side of the globe and the other found nowhere else in the world, came to be living side by side? Just how many plants and animals share the piece of Earth that we know as the United States of America? Why these and not others? These are central questions for understanding the diversity of the nation’s living resources. The United States encompasses an enormous piece of geography. With more than 3.5 million square miles of land and 12,000 miles of coastline, it is the fourth largest country on Earth, surpassed only by Russia, Canada, and China. The nation spans nearly a third of the globe, extending more than 120 degrees of longitude from eastern Maine to the tip of the Aleutian chain, and 50 degrees in latitude from Point Barrow above the Arctic Circle to the southern tip of Hawaii below the tropic of Cancer. This expanse of terrain includes an exceptional variety of topographic features, from Death Valley at 282 feet below sea level to Mt. McKinley at 20,320 feet above sea level.


Sign in / Sign up

Export Citation Format

Share Document