scholarly journals The Interannual Variability of the Haines Index over North America

2013 ◽  
Vol 52 (11) ◽  
pp. 2396-2409 ◽  
Author(s):  
Lejiang Yu ◽  
Shiyuan Zhong ◽  
Xindi Bian ◽  
Warren E. Heilman ◽  
Joseph J. Charney

AbstractThe Haines index (HI) is a fire-weather index that is widely used as an indicator of the potential for dry, low-static-stability air in the lower atmosphere to contribute to erratic fire behavior or large fire growth. This study examines the interannual variability of HI over North America and its relationship to indicators of large-scale circulation anomalies. The results show that the first three HI empirical orthogonal function modes are related respectively to El Niño–Southern Oscillation (ENSO), the Arctic Oscillation (AO), and the interdecadal sea surface temperature variation over the tropical Pacific Ocean. During the negative ENSO phase, an anomalous ridge (trough) is evident over the western (eastern) United States, with warm/dry weather and more days with high HI values in the western and southeastern United States. During the negative phase of the AO, an anomalous trough is found over the western United States, with wet/cool weather and fewer days with high HI, while an anomalous ridge occurs over the southern United States–northern Mexico, with an increase in the number of days with high HI. After the early 1990s, the subtropical high over the eastern Pacific Ocean and the Bermuda high were strengthened by a wave train that was excited over the tropical western Pacific Ocean and resulted in warm/dry conditions over the southwestern United States and western Mexico and wet weather in the southeastern United States. The above conditions are reversed during the positive phase of ENSO and AO and before the early 1990s.

2013 ◽  
Vol 26 (5) ◽  
pp. 1575-1594 ◽  
Author(s):  
Catrin M. Mills ◽  
John E. Walsh

Abstract The Pacific decadal oscillation (PDO) is an El Niño–Southern Oscillation (ENSO)-like climate oscillation that varies on multidecadal and higher-frequency scales, with a sea surface temperature (SST) dipole in the Pacific. This study addresses the seasonality, vertical structure, and across-variable relationships of the local North Pacific and downstream North American atmospheric signal of the PDO. The PDO-based composite difference fields of 500-mb geopotential height, surface air temperature, sea level pressure, and precipitation vary not only across seasons, but also from one calendar month to another within a season, although month-to-month continuity is apparent. The most significant signals occur in western North America and in the southeastern United States, where a positive PDO is associated with negative heights, consistent with underlying temperatures in the winter. In summer, a negative precipitation signal in the southeastern United States associated with a positive PDO phase is consistent with a ridge over the region. When an annual harmonic is fit to the 12 monthly surface air temperature differences at each grid point, the PDO temperature signal peaks in winter in most of North America, while a peak in summer occurs in the southeastern United States. Approximately 25% of the variance of the PDO index is accounted for by ENSO. Atmospheric composite differences based on a residual (ENSO linearly removed) PDO index have many similarities to those of the full PDO signal.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 179
Author(s):  
Roxanne Ahmed ◽  
Terry Prowse ◽  
Yonas Dibike ◽  
Barrie Bonsal

Spring freshet is the dominant annual discharge event in all major Arctic draining rivers with large contributions to freshwater inflow to the Arctic Ocean. Research has shown that the total freshwater influx to the Arctic Ocean has been increasing, while at the same time, the rate of change in the Arctic climate is significantly higher than in other parts of the globe. This study assesses the large-scale atmospheric and surface climatic conditions affecting the magnitude, timing and regional variability of the spring freshets by analyzing historic daily discharges from sub-basins within the four largest Arctic-draining watersheds (Mackenzie, Ob, Lena and Yenisei). Results reveal that climatic variations closely match the observed regional trends of increasing cold-season flows and earlier freshets. Flow regulation appears to suppress the effects of climatic drivers on freshet volume but does not have a significant impact on peak freshet magnitude or timing measures. Spring freshet characteristics are also influenced by El Niño-Southern Oscillation, the Pacific Decadal Oscillation, the Arctic Oscillation and the North Atlantic Oscillation, particularly in their positive phases. The majority of significant relationships are found in unregulated stations. This study provides a key insight into the climatic drivers of observed trends in freshet characteristics, whilst clarifying the effects of regulation versus climate at the sub-basin scale.


2014 ◽  
Vol 53 (6) ◽  
pp. 1578-1592 ◽  
Author(s):  
Nina S. Oakley ◽  
Kelly T. Redmond

AbstractThe northeastern Pacific Ocean is a preferential location for the formation of closed low pressure systems. These slow-moving, quasi-barotropic systems influence vertical stability and sustain a moist environment, giving them the potential to produce or affect sustained precipitation episodes along the west coast of the United States. They can remain motionless or change direction and speed more than once and thus often pose difficult forecast challenges. This study creates an objective climatological description of 500-hPa closed lows to assess their impacts on precipitation in the western United States and to explore interannual variability and preferred tracks. Geopotential height at 500 hPa from the NCEP–NCAR global reanalysis dataset was used at 6-h and 2.5° × 2.5° resolution for the period 1948–2011. Closed lows displayed seasonality and preferential durations. Time series for seasonal and annual event counts were found to exhibit strong interannual variability. Composites of the tracks of landfalling closed lows revealed preferential tracks as the features move inland over the western United States. Correlations of seasonal event totals for closed lows with ENSO indices, the Pacific decadal oscillation (PDO), and the Pacific–North American (PNA) pattern suggested an above-average number of events during the warm phase of ENSO and positive PDO and PNA phases. Precipitation at 30 U.S. Cooperative Observer stations was attributed to closed-low events, suggesting 20%–60% of annual precipitation along the West Coast may be associated with closed lows.


2021 ◽  
Author(s):  
Emilee M Poole ◽  
Michael D Ulyshen ◽  
Scott Horn ◽  
Patrick Anderson ◽  
Chip Bates ◽  
...  

Abstract The southeastern United States has been experiencing unexplained sugarberry (Celtis laevigata) mortality for over a decade, representing one of the most severe and widespread Celtis mortality episodes ever reported from North America. Here we describe external symptoms, progression of mortality, and the known geographic extent of the problem. More than half of all trees monitored at one site within the affected area died over five years of observation. Although many trees died within a year of first exhibiting symptoms (e.g., small yellow leaves, branch dieback, premature leaf fall), many others continued living for years after becoming symptomatic. A preliminary insecticide trial found no improvements in survivorship among trees treated with insecticides, emamectin benzoate and imidacloprid, relative to control trees. Our findings suggest the problem will likely continue and become more widespread in the coming years. Study Implications Sugarberry mortality in urban and forested environments is an ongoing problem that has the potential to spread throughout the southeastern United States and perhaps more widely, depending on the susceptibility of other native Celtis species. Many trees die within a year of first showing external symptoms, whereas others can live for many years after appearing symptomatic. Declining trees in rights-of-way and public spaces are presenting costly hazards to cities, and canopy gaps in natural areas are likely to facilitate the establishment and spread of invasive plants. Studies aimed at determining the cause of this problem are urgently needed.


Paleobiology ◽  
1981 ◽  
Vol 7 (3) ◽  
pp. 305-307 ◽  
Author(s):  
John C. Briggs

A current question being debated with considerable intensity is whether or not certain geographic areas act as centers of evolutionary radiation and supply species to other areas that are less active or less effective in an evolutionary sense. Darwin (1859) was the first to write about centers of origin which he called “single centers of creation.” He argued that each species was first produced within a single region and that it subsequently migrated from that area as far as its powers of migration and subsistence under past and present conditions permitted. Adams (1902), in discussing the influence of the southeastern United States as a center of distribution for the flora and fauna of North America, provided a series of criteria for the determination of “centers of dispersal.” His first, and evidently most important criterion was the location of “the greatest differentiation of a type.”


2020 ◽  
Vol 33 (19) ◽  
pp. 8339-8365 ◽  
Author(s):  
Funing Li ◽  
Daniel R. Chavas ◽  
Kevin A. Reed ◽  
Daniel T. Dawson II

AbstractSevere local storm (SLS) activity is known to occur within specific thermodynamic and kinematic environments. These environments are commonly associated with key synoptic-scale features—including southerly Great Plains low-level jets, drylines, elevated mixed layers, and extratropical cyclones—that link the large-scale climate to SLS environments. This work analyzes spatiotemporal distributions of both extreme values of SLS environmental parameters and synoptic-scale features in the ERA5 reanalysis and in the Community Atmosphere Model, version 6 (CAM6), historical simulation during 1980–2014 over North America. Compared to radiosondes, ERA5 successfully reproduces SLS environments, with strong spatiotemporal correlations and low biases, especially over the Great Plains. Both ERA5 and CAM6 reproduce the climatology of SLS environments over the central United States as well as its strong seasonal and diurnal cycles. ERA5 and CAM6 also reproduce the climatological occurrence of the synoptic-scale features, with the distribution pattern similar to that of SLS environments. Compared to ERA5, CAM6 exhibits a high bias in convective available potential energy over the eastern United States primarily due to a high bias in surface moisture and, to a lesser extent, storm-relative helicity due to enhanced low-level winds. Composite analysis indicates consistent synoptic anomaly patterns favorable for significant SLS environments over much of the eastern half of the United States in both ERA5 and CAM6, though the pattern differs for the southeastern United States. Overall, our results indicate that both ERA5 and CAM6 are capable of reproducing SLS environments as well as the synoptic-scale features and transient events that generate them.


Author(s):  
T Lawrence Mellichamp

The Sarracenia pitcher plants are among the world’s most beautiful and intriguing plants, and being carnivorous adds an extra dimension of fascination. They are endemic to North America – 10 species are found only in the southeastern United States and one species is widely distributed, from the northeastern US and across Canada. They are easy to cultivate if you understand their basic needs and are grown the world over. Every botanical garden should have them because they are so popular with the public. They go hand-in-hand with other unusual carnivorous plants to make a display that is captivating (puns intended!) to both children and adults. This paper covers types of pitcher plants, their habitats, brief descriptions of the species, a key to identification, cultivation and a short note on conservation.


2021 ◽  
Author(s):  
◽  
Aitana Forcén-Vázquez

<p>Subantarctic New Zealand is an oceanographycally dynamic region with the Subtropical Front (STF) to the north and the Subantarctic Front (SAF) to the south. This thesis investigates the ocean structure of the Campbell Plateau and the surrounding New Zealand subantarctic, including the spatial, seasonal, interannual and longer term variability over the ocean properties, and their connection to atmospheric variability using a combination of in-situ oceanographic measurements and remote sensing data.  The spatial and seasonal oceanographic structure in the New Zealand subantarctic region was investigated by analysing ten high resolution Conductivity Temperature and Depth (CTD) datasets, sampled during oceanographic cruises from May 1998 to February 2013. Position of fronts, water mass structure and changes over the seasons show a complex structure around the Campbell Plateau combining the influence of subtropical and subantarctic waters.  The spatial and interannual variability on the Campbell Plateau was described by analysing approximately 70 low resolution CTD profiles collected each year in December between 2002 and 2009. Conservative temperature and absolute salinity profiles reveal high variability in the upper 200m of the water column and a homogeneous water column from 200 to 600m depth. Temperature variability of about 0.7 °C, on occasions between consecutive years, is observed down to 900m depth. The presence of Subantarctic Mode Water (SAMW) on the Campbell Plateau is confirmed and Antarctic Intermediate Water (AAIW) reported for the first time in the deeper regions around the edges of the plateau.  Long-term trends and variability over the Campbell Plateau were investigated by analysing satellite derived Sea Level Anomalies (SLA) and Sea Surface Temperature (SST) time series. Links to large scale atmospheric processes are also explored through correlation with the Southern Oscillation Index (SOI) and Southern Annular Mode (SAM). SST shows a strong seasonality and interannual variability which is linked to local winds, but no significant trend is found. The SLA over the Campbell Plateau has increased at a rate of 5.2 cm decade⁻¹ in the last two decades. The strong positive trend in SLA appears to be a combination of the response of the ocean to wind stress curl (Ekman pumping), thermal expansion and ocean mass redistribution via advection amongst others.  These results suggest that the variability on the Campbell Plateau is influenced by the interaction of the STF and the SAF. The STF influence reaches the limit of the SAF over the western Campbell Plateau and the SAF influence extends all around the plateau. Results also suggest different connections between the plateau with the surrounding oceans, e.g., along the northern edge with the Bounty Trough and via the southwest edge with the SAF. A significant correlation with SOI and little correlation with SAM suggest a stronger response to tropically driven processes in the long-term variability on the Campbell Plateau.  The results of this thesis provide a new definitive assessment of the circulation, water masses and variability of the Campbell Plateau on mean, annual, and interannual time scales which will support research in other disciplines such as palaeoceanography, fisheries management and climate.</p>


Author(s):  
Bruce A. Stein ◽  
Larry E. Morse

The Carolina hemlock (Tsuga caroliniana) survives in just a few rocky streambeds along the lower slopes of the Blue Ridge Mountains. Other species of hemlock abound across the United States, but none bear a close resemblance to this particular tree. The closest relatives of the Carolina hemlock, in fact, survive in only one other forest on Earth, some 7,000 miles away in Hubei province of eastern China. The forests of eastern Asia and eastern North America are so similar that if you were suddenly transported from one to the other, you would be hard-pressed to tell them apart. In the swift mountain streams rushing past these seemingly displaced hemlocks live a number of small, colorful fish known as darters. Darters are found only in North America and have evolved into a prolific variety of fishes. Up to 175 species inhabit U.S. waters, including the famous snail darter (Percina tanasi), which brought endangered species issues to the fore when it held up construction of the Tellico Dam on the Little Tennessee River. How is it that these two organisms, hemlock and darter, one with its closest relatives on the other side of the globe and the other found nowhere else in the world, came to be living side by side? Just how many plants and animals share the piece of Earth that we know as the United States of America? Why these and not others? These are central questions for understanding the diversity of the nation’s living resources. The United States encompasses an enormous piece of geography. With more than 3.5 million square miles of land and 12,000 miles of coastline, it is the fourth largest country on Earth, surpassed only by Russia, Canada, and China. The nation spans nearly a third of the globe, extending more than 120 degrees of longitude from eastern Maine to the tip of the Aleutian chain, and 50 degrees in latitude from Point Barrow above the Arctic Circle to the southern tip of Hawaii below the tropic of Cancer. This expanse of terrain includes an exceptional variety of topographic features, from Death Valley at 282 feet below sea level to Mt. McKinley at 20,320 feet above sea level.


Sign in / Sign up

Export Citation Format

Share Document