Author(s):  
R. H. Ritchie ◽  
A. Howie

An important part of condensed matter physics in recent years has involved detailed study of inelastic interactions between swift electrons and condensed matter surfaces. Here we will review some aspects of such interactions.Surface excitations have long been recognized as dominant in determining the exchange-correlation energy of charged particles outside the surface. Properties of surface and bulk polaritons, plasmons and optical phonons in plane-bounded and spherical systems will be discussed from the viewpoint of semiclassical and quantal dielectric theory. Plasmons at interfaces between dissimilar dielectrics and in superlattice configurations will also be considered.


Author(s):  
S.R. Glanvill

This paper summarizes the application of ultramicrotomy as a specimen preparation technique for some of the Materials Science applications encountered over the past two years. Specimens 20 nm thick by hundreds of μm lateral dimension are readily prepared for electron beam analysis. Materials examined include metals, plastics, ceramics, superconductors, glassy carbons and semiconductors. We have obtain chemical and structural information from these materials using HRTEM, CBED, EDX and EELS analysis. This technique has enabled cross-sectional analysis of surfaces and interfaces of engineering materials and solid state electronic devices, as well as interdiffusion studies across adjacent layers.Samples are embedded in flat embedding moulds with Epon 812 epoxy resin / Methyl Nadic Anhydride mixture, using DY064 accelerator to promote the reaction. The embedded material is vacuum processed to remove trapped air bubbles, thereby improving the strength and sectioning qualities of the cured block. The resin mixture is cured at 60 °C for a period of 80 hr and left to equilibrate at room temperature.


1982 ◽  
Vol 43 (C1) ◽  
pp. C1-57-C1-62 ◽  
Author(s):  
R. C. Pond ◽  
D. B. Holt

2002 ◽  
Vol 69 (4) ◽  
pp. 405-406 ◽  
Author(s):  
Demitris Kouris ◽  
Huajian Gao

2021 ◽  
Vol 22 ◽  
pp. 100891
Author(s):  
Saeed Reza Hormozi Jangi ◽  
Hamid Khoshalhan Davoudli ◽  
Yousef Delshad ◽  
Mohammad Reza Hormozi Jangi ◽  
Ali Reza Hormozi Jangi

1993 ◽  
Vol 26 (3) ◽  
pp. 561-562 ◽  
Author(s):  
W. Zhao ◽  
X. Zhao ◽  
M. H. Rafailovich ◽  
J. Sokolov ◽  
R. J. Composto ◽  
...  

MRS Bulletin ◽  
1997 ◽  
Vol 22 (6) ◽  
pp. 46-51 ◽  
Author(s):  
W.R. Salaneck ◽  
J.L. Brédas

Since the discovery of high electrical conductivity in doped polyacetylene in 1977, π-conjugated polymers have emerged as viable semiconducting electronic materials for numerous applications. In the context of polymer electronic devices, one must understand the nature of the polymer surface's electronic structure and the interface with metals. For conjugated polymers, photoelectron spectroscopy—especially in connection with quantum-chemical modeling—provides a maximum amount of both chemical and electronic structural information in one (type of) measurement. Some details of the early stages of interface formation with metals on the surfaces of conjugated polymers and model molecular solids in connection with polymer-based light-emitting devices (LEDs) are outlined. Then a chosen set of issues is summarized in a band structure diagram for a polymer LED, based upon a “clean calcium electrode” on the clean surface of a thin film of poly(p-phenylene vinylene) (PPV). This diagram helps to point out the complexity of the systems involved in polymer LEDs. No such thing as “an ideal metal-on-polymer contact” exists. There is always some chemistry occurring at the interface.


Science ◽  
2012 ◽  
Vol 335 (6064) ◽  
pp. 64-67 ◽  
Author(s):  
B. Weber ◽  
S. Mahapatra ◽  
H. Ryu ◽  
S. Lee ◽  
A. Fuhrer ◽  
...  

As silicon electronics approaches the atomic scale, interconnects and circuitry become comparable in size to the active device components. Maintaining low electrical resistivity at this scale is challenging because of the presence of confining surfaces and interfaces. We report on the fabrication of wires in silicon—only one atom tall and four atoms wide—with exceptionally low resistivity (~0.3 milliohm-centimeters) and the current-carrying capabilities of copper. By embedding phosphorus atoms within a silicon crystal with an average spacing of less than 1 nanometer, we achieved a diameter-independent resistivity, which demonstrates ohmic scaling to the atomic limit. Atomistic tight-binding calculations confirm the metallicity of these atomic-scale wires, which pave the way for single-atom device architectures for both classical and quantum information processing.


Sign in / Sign up

Export Citation Format

Share Document