scholarly journals Phase Transitions of Regular Schwarzschild-Anti-deSitter Black Holes

Author(s):  
A. M. Frassino
2020 ◽  
Vol 35 (39) ◽  
pp. 2050326
Author(s):  
Abdul Jawad ◽  
Shahid Chaudhary

Among many open questions in theoretical physics, consistent quantum gravity theory is still a major issue to be solved. Recent major works in phase transitions of black holes (BH) can be helpful for quantum interpretation of classical gravity. We study the new effective method to discuss the thermodynamic phase transitions onto well renowned regular BHs. Ordinary approaches of phase transitions depend upon equation of state and it is impossible to obtain all critical points with ordinary approaches. This study is derived from the slope of temperature versus entropy and it provides the possibility of finding all the critical points analytically. This technique provides pressure, which is different from standard relation of pressure and independent of other thermodynamical relations. We discuss some issues in ordinary methods and provide an easy approach to investigate the critical behavior of thermodynamical quantities. We find out the phase transitions points and horizon radii of non-physical range for BHs. We also use the new thermodynamical relations to briefly study well-known Joule–Thomson (JT) effect on regular BH.


1998 ◽  
Vol 13 (03) ◽  
pp. 239-252 ◽  
Author(s):  
W. A. SABRA

An algorithm for constructing general static black hole configuration for the theory of N=2, d= 5 supergravity coupled to an arbitrary number of Abelain vector multiplets is given. The underlying very special geometry structure plays a major role in this construction. From the viewpoint of M-theory compactified on a Calabi–Yau threefold, these black holes are identified with BPS winding states of the membrane around two-cycles of the Calabi–Yau threefold, and thus are of importance in the probing of the phase transitions in the moduli space of M-theory compactified on a Calabi–Yau threefold.


Author(s):  
Sergey Kruglov

The principles of causality and unitarity are studied within rational nonlinear electrodynamics proposed earlier. We investigate dyonic and magnetized black holes and show that in the self-dual case, when the electric charge equals the magnetic charge, corrections to Coulomb's law and Reissner-Nordstrom solutions are absent. In the case of the magnetic black hole, the Hawking temperature, the heat capacity and the Helmholtz free energy are calculated. It is shown that there are second-order phase transitions and it was demonstrated that at some range of parameters the black holes are stable.


2007 ◽  
Vol 2007 (09) ◽  
pp. 026-026 ◽  
Author(s):  
Tanay K Dey ◽  
Sudipta Mukherji ◽  
Subir Mukhopadhyay ◽  
Swarnendu Sarkar

Sign in / Sign up

Export Citation Format

Share Document