Dynamic Thermal Softening Behavior of Additive Materials for Hybrid Manufacturing

Author(s):  
Steven Mates ◽  
Mark Stoudt ◽  
Gregor Jacob ◽  
Wilfredo Moscoso ◽  
Vis Madhavan
2001 ◽  
Vol 84 (4) ◽  
pp. 775-780 ◽  
Author(s):  
Atsunori Matsuda ◽  
Teruyuki Sasaki ◽  
Koichi Hasegawa ◽  
Masahiro Tatsumisago ◽  
Tsutomu Minami

2021 ◽  
Author(s):  
Nishant Ojal ◽  
Harish P. Cherukuri ◽  
Tony L. Schmitz ◽  
Kyle T. Devlugt ◽  
Adam W. Jaycox

Abstract Johnson-Cook constitutive model is a commonly used material model for machining simulations. The model includes five parameters that capture the initial yield stress, strain-hardening, strain-rate hardening, and thermal softening behavior of the material. These parameters are difficult to determine using experiments since the conditions observed during machining (such as high strain-rates of the order of 10 5 /sec - 10 6 /sec) are challenging to recreate in the laboratory. To address this problem, several researchers have recently proposed inverse approaches where a combination of experiments and analytical models are used to predict the Johnson-Cook parameters. The errors between the measured cutting forces, chip thicknesses and temperatures and those predicted by analytical models are minimized and the parameters are determined. In this work, it is shown that only two of the five Johnson-Cook parameters can be determined uniquely using inverse approaches. Two different algorithms, namely, Adaptive Memory Programming for Global Optimization (AMPGO) and Particle Swarm Optimization (PSO), are used for this purpose. The extended Oxley’s model is used as the analytical tool for optimization. For determining a parameter’s value, a large range for each parameter is provided as an input to the algorithms. The algorithms converge to several different sets of values for the five Johnson-Cook parameters when all the five parameters are considered as unknown in the optimization algorithm. All of these sets, however, yield the same chip shape and cutting forces in FEM simulations. Further analyses show that only the strain-rate and thermal softening parameters can be determined uniquely and the three parameters present in the strain-hardening term of the Johnson-Cook model cannot be determined uniquely using the inverse method. A combined experimental and numerical approach is proposed to eliminate this determine all parameters uniquely.


2000 ◽  
Vol 108 (1261) ◽  
pp. 830-835 ◽  
Author(s):  
Atsunori MATSUDA ◽  
Teruyuki SASAKI ◽  
Koichi HASEGAWA ◽  
Masahiro TATSUMISAGO ◽  
Tsutomu MINAMI

Alloy Digest ◽  
1977 ◽  
Vol 26 (10) ◽  

Abstract CHASE 14310 is a high-conductivity copper with excellent resistance to thermal softening. It is a deoxidized, electronic grade of copper with excellent formability, weldability and plateability. It is available in strip form and has a wide range of applications. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on forming, heat treating, machining, joining, and surface treatment. Filing Code: Cu-341. Producer or source: Chase Brass & Copper Company Inc..


2020 ◽  
Vol 66 (1) ◽  
Author(s):  
Yoko Okahisa ◽  
Keisuke Kojiro ◽  
Hatsuki Ashiya ◽  
Takeru Tomita ◽  
Yuzo Furuta ◽  
...  

Abstract Age is an important factor that dictates bamboo’s mechanical properties. In Japan, bamboo plants aged 3–5 years are selected for use as materials because of their robustness and decorative or craft-friendly characteristics. In this study, the age-dependent and radial sectional differences in bamboo’s dynamic viscoelastic properties in relation to lignin structural variation, were evaluated. We used Phyllostachys pubescens samples at the current year and at 1.5, 3.5, 6.5, 9.5, 12.5, and 15.5 years of age. There was a clear age dependence in the peak temperature of tan δ and in the yield of thioacidolysis products derived from β-O-4 lignin structures. The highest peak temperature tan δ value was detected in 3.5-year-old bamboo, which contained the highest amount of the thioacidolysis products. Moreover, tan δ’s peak temperature was always higher on the outer side, and the ratio of S/G thioacidolysis products was always higher on the inner side of bamboo plants of all ages. These results suggest that changes in bamboo’s thermal softening properties from aging are caused by the maturation and degradation of lignin in bamboo.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Amirreza Hooshyar Telegraphi ◽  
Akif Asil Bulgak

AbstractDue to the stringent awareness toward the preservation and resuscitation of natural resources and the potential economic benefits, designing sustainable manufacturing enterprises has become a critical issue in recent years. This presents different challenges in coordinating the activities inside the manufacturing systems with the entire closed-loop supply chain. In this paper, a mixed-integer mathematical model for designing a hybrid-manufacturing-remanufacturing system in a closed-loop supply chain is presented. Noteworthy, the operational planning of a cellular hybrid manufacturing-remanufacturing system is coordinated with the tactical planning of a closed-loop supply chain. To improve the flexibility and reliability in the cellular hybrid manufacturing-remanufacturing system, alternative process routings and contingency process routings are considered. The mathematical model in this paper, to the best of our knowledge, is the first integrated model in the design of hybrid cellular manufacturing systems which considers main and contingency process routings as well as reliability of the manufacturing system.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 704
Author(s):  
Zahraa Kansoun ◽  
Hicham Chaouki ◽  
Donald Picard ◽  
Julien Lauzon-Gauthier ◽  
Houshang Alamdari ◽  
...  

Carbon-like materials such as the anode and the ramming paste play a crucial role in the efficiency of the Hall–Héroult process. The mechanical behavior of these materials during forming processes is complex and still ill-understood. This work aimed to investigate experimentally the mechanical behavior of a carbon paste used in the aluminum industry under different loading conditions. For this purpose, experiments consisting of (1) relaxation tests at different compaction levels, (2) quasi-static cyclic tests at several amplitudes, (3) monotonic compaction tests at varied strain rates, and (4) vibrocompaction tests at different frequencies were carried out. The obtained results highlight some fundamental aspects of the carbon paste behavior such as the strain rate’s effect on the paste compressibility, the hardening-softening behavior under cyclic loadings, the effect of cycling amplitude on the stress state and the paste densification, and the frequency effect on the vibrocompaction process. These results pave the way for the development of reliable rheological models for the modeling and the numerical simulation of carbon pastes forming processes.


Sign in / Sign up

Export Citation Format

Share Document