Primary Effusion Lymphoma (PEL)

Author(s):  
Antonino Carbone ◽  
Annunziata Gloghini
Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 118
Author(s):  
Roberta Gonnella ◽  
Maria Saveria Gilardini Montani ◽  
Luisa Guttieri ◽  
Maria Anele Romeo ◽  
Roberta Santarelli ◽  
...  

Primary Effusion Lymphoma (PEL) is a highly aggressive B cell lymphoma associated with Kaposi’s Sarcoma-associated Herpesvirus (KSHV). It is characterized by a high level of basal Endoplasmic Reticulum (ER) stress, Unfolded Protein Response (UPR) activation and constitutive phosphorylation of oncogenic pathways such as the Signal Transducer and activator of Transcription (STAT3). In this study, we found that the inositol requiring kinase (IRE) 1alpha/X-box binding protein (XBP1) axis of UPR plays a key role in the survival of PEL cells, while double stranded RNA-activated protein kinase-like ER kinase (PERK) and activating transcription factor (ATF) 6 slightly influence it, in correlation with the capacity of the IRE1alpha/XBP1 axis to induce the release of interleukin (IL)-6, IL-10 and Vascular-Endothelial Growth Factor (VEGF). Moreover, we found that IRE1alpha/XBP1 inhibition reduced STAT3 Tyr705 phosphorylation and induced a pro-survival autophagy in PEL cells. In conclusion, this study suggests that targeting the IRE1alpha/XBP1 axis represents a promising strategy against PEL cells and that the cytotoxic effect of this treatment may be potentiated by autophagy inhibition.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Magda Zanelli ◽  
Francesca Sanguedolce ◽  
Maurizio Zizzo ◽  
Andrea Palicelli ◽  
Maria Chiara Bassi ◽  
...  

Abstract Background Primary effusion lymphoma is a rare, aggressive large B-cell lymphoma strictly linked to infection by Human Herpes virus 8/Kaposi sarcoma-associated herpes virus. In its classic form, it is characterized by body cavities neoplastic effusions without detectable tumor masses. It often occurs in immunocompromised patients, such as HIV-positive individuals. Primary effusion lymphoma may affect HIV-negative elderly patients from Human Herpes virus 8 endemic regions. So far, rare cases have been reported in transplanted patients. The purpose of our systematic review is to improve our understanding of this type of aggressive lymphoma in the setting of transplantation, focusing on epidemiology, clinical presentation, pathological features, differential diagnosis, treatment and outcome. The role of assessing the viral serological status in donors and recipients is also discussed. Methods We performed a systematic review adhering to the PRISMA guidelines. The literature search was conducted on PubMed/MEDLINE, Web of Science, Scopus, EMBASE and Cochrane Library, using the search terms “primary effusion lymphoma” and “post-transplant”. Results Our search identified 13 cases of post-transplant primary effusion lymphoma, predominantly in solid organ transplant recipients (6 kidney, 3 heart, 2 liver and 1 intestine), with only one case after allogenic bone marrow transplantation. Long-term immunosuppression is important in post-transplant primary effusion lymphoma commonly developing several years after transplantation. Kaposi Sarcoma occurred in association with lymphoma in 4 cases of solid organ recipients. The lymphoma showed the classical presentation with body cavity effusions in absence of tumor masses in 10 cases; 2 cases presented as solid masses, lacking effusions and one case as effusions associated with multiple organ involvement. Primary effusion lymphoma occurring in the setting of transplantation was more often Epstein Barr-virus negative. The prognosis was poor. In addition to chemotherapy, reduction of immunosuppressive treatment, was generally attempted. Conclusions Primary effusion lymphoma is a rare, but often fatal post-transplant complication. Its rarity and the difficulty in achieving the diagnosis may lead to miss this complication. Clinicians should suspect primary effusion lymphoma in transplanted patients, presenting generally with unexplained body cavity effusions, although rare cases with solid masses are described.


Blood ◽  
2002 ◽  
Vol 100 (9) ◽  
pp. 3415-3418 ◽  
Author(s):  
Ming-Qing Du ◽  
Tim C. Diss ◽  
Hongxiang Liu ◽  
Hongtao Ye ◽  
Rifat A. Hamoudi ◽  
...  

Abstract Kaposi sarcoma–associated herpesvirus (KSHV) is known to be associated with 3 distinct lymphoproliferative disorders: primary effusion lymphoma (PEL), multicentric Castleman disease (MCD), and MCD-associated plasmablastic lymphoma. We report 3 cases of a previously undescribed KSHV-associated lymphoproliferative disorder. The disease presented as localized lymphadenopathy and showed a favorable response to chemotherapy or radiotherapy. Histologically, the lymphoproliferation is characterized by plasmablasts that preferentially involved germinal centers of the lymphoid follicles, forming confluent aggregates. They were negative for CD20, CD27, CD79a, CD138, BCL6, and CD10 but showed monotypic κ or λ light chain. Clusters of CD10+CD20+ residual follicle center cells were identified in some of the follicles. The plasmablasts were positive for both KSHV and EBV, and most of them also expressed viral interleukin-6 (vIL-6). Unexpectedly, molecular analysis of whole tissue sections or microdissected KSHV-positive aggregates demonstrated a polyclonal or oligoclonal pattern of immunoglobulin (Ig) gene rearrangement. The plasmablasts showed somatic mutation and intraclonal variation in the rearranged Ig genes, and one case expressed switched Ig heavy chain (IgA), suggesting that they originated from germinal center B cells. We propose calling this distinctive entity “KSHV-associated germinotropic lymphoproliferative disorder.”


2001 ◽  
Vol 94 (1-2) ◽  
pp. 137-146 ◽  
Author(s):  
James E. Shaw ◽  
Susan Knisley ◽  
Laura Severson ◽  
Brian Rahill ◽  
Raymond W. Lang

Blood ◽  
2011 ◽  
Vol 118 (19) ◽  
pp. 5344-5354 ◽  
Author(s):  
Christophe Guilluy ◽  
Zhigang Zhang ◽  
Prasanna M. Bhende ◽  
Lisa Sharek ◽  
Ling Wang ◽  
...  

Abstract Kaposi sarcoma–associated herpesvirus (KSHV) is associated with 3 different human malignancies: Kaposi sarcoma (KS), primary effusion lymphoma, and multicentric Castleman disease. The KS lesion is driven by KSHV-infected endothelial cells and is highly dependent on autocrine and paracrine factors for survival and growth. We report that latent KSHV infection increases the vascular permeability of endothelial cells. Endothelial cells with latent KSHV infection display increased Rac1 activation and activation of its downstream modulator, p21-activated kinase 1 (PAK1). The KSHV-infected cells also exhibit increases in tyrosine phosphorylation of vascular endothelial (VE)–cadherin and β-catenin, whereas total levels of these proteins remained unchanged, suggesting that latent infection disrupted endothelial cell junctions. Consistent with these findings, we found that KSHV-infected endothelial cells displayed increased permeability compared with uninfected endothelial cells. Knockdown of Rac1 and inhibition of reactive oxygen species (ROS) resulted in decreased permeability in the KSHV-infected endothelial cells. We further demonstrate that the KSHV K1 protein can activate Rac1. Rac1 was also highly activated in KSHV-infected endothelial cells and KS tumors. In conclusion, KSHV latent infection increases Rac1 and PAK1 activity in endothelial cells, resulting in the phosphorylation of VE-cadherin and β-catenin and leading to the disassembly of cell junctions and to increased vascular permeability of the infected endothelial cells.


Sign in / Sign up

Export Citation Format

Share Document