scholarly journals Categorizing Air Quality Information Flow on Twitter Using Deep Learning Tools

Author(s):  
Brigitte Juanals ◽  
Jean-Luc Minel
2021 ◽  
Vol 11 (13) ◽  
pp. 5880
Author(s):  
Paloma Tirado-Martin ◽  
Raul Sanchez-Reillo

Nowadays, Deep Learning tools have been widely applied in biometrics. Electrocardiogram (ECG) biometrics is not the exception. However, the algorithm performances rely heavily on a representative dataset for training. ECGs suffer constant temporal variations, and it is even more relevant to collect databases that can represent these conditions. Nonetheless, the restriction in database publications obstructs further research on this topic. This work was developed with the help of a database that represents potential scenarios in biometric recognition as data was acquired in different days, physical activities and positions. The classification was implemented with a Deep Learning network, BioECG, avoiding complex and time-consuming signal transformations. An exhaustive tuning was completed including variations in enrollment length, improving ECG verification for more complex and realistic biometric conditions. Finally, this work studied one-day and two-days enrollments and their effects. Two-days enrollments resulted in huge general improvements even when verification was accomplished with more unstable signals. EER was improved in 63% when including a change of position, up to almost 99% when visits were in a different day and up to 91% if the user experienced a heartbeat increase after exercise.


2021 ◽  
Vol 12 (5) ◽  
pp. 101045
Author(s):  
Chi-Yeh Lin ◽  
Yue-Shan Chang ◽  
Satheesh Abimannan

2018 ◽  
Vol 68 (1) ◽  
pp. 161-181 ◽  
Author(s):  
Dan Guest ◽  
Kyle Cranmer ◽  
Daniel Whiteson

Machine learning has played an important role in the analysis of high-energy physics data for decades. The emergence of deep learning in 2012 allowed for machine learning tools which could adeptly handle higher-dimensional and more complex problems than previously feasible. This review is aimed at the reader who is familiar with high-energy physics but not machine learning. The connections between machine learning and high-energy physics data analysis are explored, followed by an introduction to the core concepts of neural networks, examples of the key results demonstrating the power of deep learning for analysis of LHC data, and discussion of future prospects and concerns.


Sign in / Sign up

Export Citation Format

Share Document