Comparative Study of Distributed Deep Learning Tools on Supercomputers

Author(s):  
Xin Du ◽  
Di Kuang ◽  
Yan Ye ◽  
Xinxin Li ◽  
Mengqiang Chen ◽  
...  
2019 ◽  
Vol 7 (4) ◽  
pp. 184-190
Author(s):  
Himani Maheshwari ◽  
Pooja Goswami ◽  
Isha Rana

2021 ◽  
Vol 11 (13) ◽  
pp. 5880
Author(s):  
Paloma Tirado-Martin ◽  
Raul Sanchez-Reillo

Nowadays, Deep Learning tools have been widely applied in biometrics. Electrocardiogram (ECG) biometrics is not the exception. However, the algorithm performances rely heavily on a representative dataset for training. ECGs suffer constant temporal variations, and it is even more relevant to collect databases that can represent these conditions. Nonetheless, the restriction in database publications obstructs further research on this topic. This work was developed with the help of a database that represents potential scenarios in biometric recognition as data was acquired in different days, physical activities and positions. The classification was implemented with a Deep Learning network, BioECG, avoiding complex and time-consuming signal transformations. An exhaustive tuning was completed including variations in enrollment length, improving ECG verification for more complex and realistic biometric conditions. Finally, this work studied one-day and two-days enrollments and their effects. Two-days enrollments resulted in huge general improvements even when verification was accomplished with more unstable signals. EER was improved in 63% when including a change of position, up to almost 99% when visits were in a different day and up to 91% if the user experienced a heartbeat increase after exercise.


Author(s):  
Adwait Patil

Abstract: Alzheimer’s disease is one of the neurodegenerative disorders. It initially starts with innocuous symptoms but gradually becomes severe. This disease is so dangerous because there is no treatment, the disease is detected but typically at a later stage. So it is important to detect Alzheimer at an early stage to counter the disease and for a probable recovery for the patient. There are various approaches currently used to detect symptoms of Alzheimer’s disease (AD) at an early stage. The fuzzy system approach is not widely used as it heavily depends on expert knowledge but is quite efficient in detecting AD as it provides a mathematical foundation for interpreting the human cognitive processes. Another more accurate and widely accepted approach is the machine learning detection of AD stages which uses machine learning algorithms like Support Vector Machines (SVMs) , Decision Tree , Random Forests to detect the stage depending on the data provided. The final approach is the Deep Learning approach using multi-modal data that combines image , genetic data and patient data using deep models and then uses the concatenated data to detect the AD stage more efficiently; this method is obscure as it requires huge volumes of data. This paper elaborates on all the three approaches and provides a comparative study about them and which method is more efficient for AD detection. Keywords: Alzheimer’s Disease (AD), Fuzzy System , Machine Learning , Deep Learning , Multimodal data


Author(s):  
Neili Zakaria ◽  
Fezari Mohamed ◽  
Redjati Abdelghani ◽  
Kenneth Sundaraj

2020 ◽  
Vol 17 (12) ◽  
pp. 5438-5446
Author(s):  
C. Suguna ◽  
S. P. Balamurugan

Cervical cancer is a commonly occurring deadliest disease among women, which needs earlier diagnosis to reduce the prevalence. Pap-smear is considered as a widely employed technique to screen and diagnose cervical cancer. Since classical manual screening techniques are inefficient in the identification of cervical cancer, several research works have been started to develop automated machine learning (ML) and deep learning (DL) tools for cervical cancer diagnosis. This paper surveys the recent works made on cervical cancer diagnosis and classification. The recently presently ML and DL models for cervical cancer diagnosis and classification has been reviewed in detail. Besides, segmentation techniques developed for cervical cancer diagnosis also surveyed. At the end of the survey, a brief comparative study has been carried out to identify the significance of the reviewed methods.


2018 ◽  
Vol 68 (1) ◽  
pp. 161-181 ◽  
Author(s):  
Dan Guest ◽  
Kyle Cranmer ◽  
Daniel Whiteson

Machine learning has played an important role in the analysis of high-energy physics data for decades. The emergence of deep learning in 2012 allowed for machine learning tools which could adeptly handle higher-dimensional and more complex problems than previously feasible. This review is aimed at the reader who is familiar with high-energy physics but not machine learning. The connections between machine learning and high-energy physics data analysis are explored, followed by an introduction to the core concepts of neural networks, examples of the key results demonstrating the power of deep learning for analysis of LHC data, and discussion of future prospects and concerns.


Sign in / Sign up

Export Citation Format

Share Document