Electron Microscopy and Microanalysis for Wear Surface Characterization

Author(s):  
Joseph R. Michael ◽  
Paul G. Kotula ◽  
Somuri V. Prasad
2009 ◽  
Vol 24 (5) ◽  
pp. 1683-1687 ◽  
Author(s):  
G.A. Crawford ◽  
N. Chawla ◽  
J. Ringnalda

We report on a novel biocompatible hierarchical TiO2 porous coating on the surface of Ti, processed via anodic oxidation. The coating consists of large (∼1–20 μm) pores on the microscale and nanotubes (∼50 nm diameter) on the nanoscale. This structure is exciting because of its potential application as a bioactive coating for Ti bone implants. Surface characterization of the coating showed nanotubes of relatively uniform diameter. The interface between TiO2 nanotubes and Ti, studied by transmission electron microscopy, was incoherent. The tubes were also somewhat interconnected.


2015 ◽  
Vol 41 (1) ◽  
pp. 17-21 ◽  
Author(s):  
Mariana Lima da Costa Valente ◽  
Antonio Carlos Shimano ◽  
Elcio Marcantonio Junior ◽  
Andréa Candido dos Reis

The purpose of the study was to use scanning electron microscopy and energy dispersive x-ray spectrometry to assess possible morphologic and chemical changes after performing double-insertion and pullout tests of implants of different shapes and surface treatments. Four different types of implants were used—cylindrical machined-surface implants, cylindrical double-surface–treated porous implants, cylindrical surface-treated porous implants, and tapered surface-treated porous implants—representing a total of 32 screws. The implants were inserted into synthetic bone femurs, totaling 8 samples, before performing each insertion with standardized torque. After each pullout the implants were analyzed by scanning electron microscopy and energy dispersive x-ray spectrometry using a universal testing machine and magnified 35 times. No structural changes were detected on morphological surface characterization, only substrate accumulation. As for composition, there were concentration differences in the titanium, oxygen, and carbon elements. Implants with surface acid treatment undergo greater superficial changes in chemical composition than machined implants, that is, the greater the contact area of the implant with the substrate, the greater the oxide layer change. In addition, prior manipulation can alter the chemical composition of implants, typically to a greater degree in surface-treated implants.


Sign in / Sign up

Export Citation Format

Share Document