The Analysis of Efficient Monitoring Grid Traffic with Flow Conservation Equation

Author(s):  
Xianghui Liu ◽  
Jianping Yin ◽  
Xicheng Lu ◽  
Zhiping Cai ◽  
Jianmin Zhao
2020 ◽  
Vol 37 (9) ◽  
pp. 3269-3291
Author(s):  
Encarnación Martínez-Moreno ◽  
Gonzalo Garcia-Ros ◽  
Ivan Alhama

Purpose This study aims to present a new numerical model for the simulation of water flow through porous media of anisotropic character, based on the network simulation method and with the use of the free code Ngspice. Design/methodology/approach For its design, it starts directly from the flow conservation equation, which presents several advantages in relation to the numerical simulation of the governing equation in terms of the potential head. The model provides very precise solutions of streamlines and potential patterns in all cases, with relatively small meshes and acceptable calculation times, both essential characteristics when developing a computational tool for engineering purposes. The model has been successfully verified with analytical results for non-penetrating dams in isotropic media. Findings Applications of the model are presented for the construction of the flow nets, calculation of uplift pressures, infiltrated flow and average exit gradient in anisotropic scenarios with penetrating dams with and without sheet piles, being all this output information part of the decision process in ground engineering problems involving these retaining structures. Originality/value This study presents, for the first time, a numerical network model for seepage problems that is not obtained from the Laplace's governing equation, but from the water flow conservation continuity equation.


1991 ◽  
Vol 24 (2) ◽  
pp. 309-314 ◽  
Author(s):  
G. Teutsch ◽  
K. Herbold-Paschke ◽  
D. Tougianidou ◽  
T. Hahn ◽  
K. Botzenhart

In this paper the major processes governing the persistence and underground transport of viruses and bacteria are reviewed in respect to their importance under naturally occurring conditions. In general, the simulation of the governing processes is based on the macroscopic mass-conservation equation with the addition of some filter and/or retardation factor and a decay coefficient, representing the natural “die-off” of the microorganisms. More advanced concepts try to incorporate growth and decay coefficients together with deposition and declogging factors. At present, none of the reported concepts has been seriously validated. Due to the complexity of natural systems and the pathogenic properties of some of the microorganisms, experiments under controlled laboratory conditions are required. A laboratory setup is presented in which a great variety of natural conditions can be simulated. This comprises a set of 1 metre columns and an 8 metre stainless-steel flume with 24 sampling ports. The columns are easily filled and conditioned and therefore used to study the effects of different soil-microorganism combinations under various environmental conditions. In the artificial flume natural underground conditions are simulated using sand and gravel aquifer material from the river Neckar alluvium. A first set of results from the laboratory experiments is presented together with preliminary model simulations. The large variety of observed breakthrough curves and recovery for the bacteria and viruses under investigation demonstrates the great uncertainty encountered in microbiological risk assessment.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Long-Fei Wang ◽  
Xiao-Jun Yang ◽  
Dumitru Baleanu ◽  
Carlo Cattani ◽  
Yang Zhao

We suggest a new model of the scale conservation equation in the mathematical theory of vehicular traffic flow on the fractal network based on the local fractional calculus.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Minhua Shao ◽  
Lijun Sun ◽  
Xianzhi Shao

The sensor location problem (SLP) discussed in this paper is to find the minimum number and optimum locations of the flow counting points in the road network so that the traffic flows over the whole network can be inferred uniquely. Flow conservation system at intersections is formulated firstly using the turning ratios as the prior information. Then the coefficient matrix of the flow conservation system is proved to be nonsingular. Based on that, the minimal number of counting points is determined to be the total number of exclusive incoming roads and dummy roads, which are added to the network to represent the trips generated on real roads. So the task of SLP model based on turning ratios is just to determine the optimal sensor locations. The following analysis in this paper shows that placing sensors on all the exclusive incoming roads and dummy roads can always generate a unique network flow vector for any network topology. After that, a detection set composed of only real roads is proven to exist from the view of feasibility in reality. Finally, considering the roads importance and cost of the sensors, a weighted SLP model is formulated to find the optimal detection set. The greedy algorithm is proven to be able to provide the optimal solution for the proposed weighted SLP model.


Author(s):  
I. Hischier ◽  
D. Hess ◽  
W. Lipiński ◽  
M. Modest ◽  
A. Steinfeld

A novel design of a high-temperature pressurized solar air receiver for power generation via combined Brayton–Rankine cycles is proposed. It consists of an annular reticulate porous ceramic (RPC) bounded by two concentric cylinders. The inner cylinder, which serves as the solar absorber, has a cavity-type configuration and a small aperture for the access of concentrated solar radiation. Absorbed heat is transferred by conduction, radiation, and convection to the pressurized air flowing across the RPC. A 2D steady-state energy conservation equation coupling the three modes of heat transfer is formulated and solved by the finite volume technique and by applying the Rosseland diffusion, P1, and Monte Carlo radiation methods. Key results include the temperature distribution and thermal efficiency as a function of the geometrical and operational parameters. For a solar concentration ratio of 3000 suns, the outlet air temperature reaches 1000°C at 10 bars, yielding a thermal efficiency of 78%.


2001 ◽  
Vol 431 ◽  
pp. 223-237 ◽  
Author(s):  
WILLI MÖHRING

A sound wave propagating in an inhomogeneous duct consisting of two semi-infinite uniform ducts with a smooth transition region in between and which carries a steady flow is considered. The duct walls may be rigid or compliant. For an irrotational sound wave it is shown that the three properties of the title are closely related, such that the validity of any two implies the validity of the third. Furthermore it is shown that the three properties are fulfilled for lossless locally reacting duct walls provided the impedance varies at most continuously. For piecewise-continuous wall properties edge conditions are essential. By an analytic continuation argument it is shown that reciprocity remains true for walls with loss. For rotational flow, energy conservation theorems have been derived only with the help of additional potential-like variables. The inter-relation between the three properties remains valid if one considers these additional variables to be known. If only the basic gasdynamic variables in both half-ducts are known, one cannot formulate an energy conservation equation; however, reciprocity is fulfilled.


Transport ◽  
2008 ◽  
Vol 23 (1) ◽  
pp. 73-77 ◽  
Author(s):  
Shu-Guang Li

We present a genetic algorithm for solving dynamic simultaneous route and departure time equilibrium problem. Not only can a flow‐swapping process in the algorithm guarantee the flow conservation constraints between OD pair, but also accelerate the convergence velocity of the algorithm. Finally, a simulation example shows feasibility and validity of genetic algorithm.


Author(s):  
Ahmad F. Zueter ◽  
Minghan Xu ◽  
Mahmoud A. Alzoubi ◽  
Agus P. Sasmito

Abstract Building concentric tubes is one of biggest practical challenges in the construction of freeze-pipes of artificial ground freezing (AGF) applications for deep underground mines. In this study, the influence of tubes eccentricity on phase-front expansion (i.e., expansion of the frozen body) and energy consumption of AGF systems is analyzed. A 1+1D semi-conjugate model that solves two-phase transient energy conservation equation is derived. The model is firstly validated against experimental data and then verified with a fully-conjugate model from the literature. After that, the model is extended to a field scale of typical deep underground mines to study freeze-pipe eccentricity. The results show that an eccentric freeze pipe can reduce the phase-front expansion by around 25%, as compared with a concentric one. Also, the geometrical profile of the phase-front is significantly influenced by the freeze-pipe eccentricity. Furthermore, in the passive zone, where AGF coolants are isolated from the ground to reduce energy consumption, freeze pipe eccentricity can increase the coolant heat gain by 10%. This percentage can increase up to 200% if radiation heat transfer is minimized.


2018 ◽  
Vol 615 ◽  
pp. A67 ◽  
Author(s):  
P. A. González-Morales ◽  
E. Khomenko ◽  
T. P. Downes ◽  
A. de Vicente

The interaction of plasma with magnetic field in the partially ionised solar atmosphere is frequently modelled via a single-fluid approximation, which is valid for the case of a strongly coupled collisional media, such as solar photosphere and low chromosphere. Under the single-fluid formalism the main non-ideal effects are described by a series of extra terms in the generalised induction equation and in the energy conservation equation. These effects are: Ohmic diffusion, ambipolar diffusion, the Hall effect, and the Biermann battery effect. From the point of view of the numerical solution of the single-fluid equations, when ambipolar diffusion or Hall effects dominate can introduce severe restrictions on the integration time step and can compromise the stability of the numerical scheme. In this paper we introduce two numerical schemes to overcome those limitations. The first of them is known as super time-stepping (STS) and it is designed to overcome the limitations imposed when the ambipolar diffusion term is dominant. The second scheme is called the Hall diffusion scheme (HDS) and it is used when the Hall term becomes dominant. These two numerical techniques can be used together by applying Strang operator splitting. This paper describes the implementation of the STS and HDS schemes in the single-fluid code MANCHA3D. The validation for each of these schemes is provided by comparing the analytical solution with the numerical one for a suite of numerical tests.


Sign in / Sign up

Export Citation Format

Share Document