scholarly journals ShortCuts: Using Soft State to Improve DHT Routing

Author(s):  
Kiran Tati ◽  
Geoffrey M. Voelker
Keyword(s):  
2016 ◽  
Vol 826 (1) ◽  
pp. 87 ◽  
Author(s):  
D. J. Walton ◽  
J. A. Tomsick ◽  
K. K. Madsen ◽  
V. Grinberg ◽  
D. Barret ◽  
...  
Keyword(s):  

2020 ◽  
Vol 72 (6) ◽  
Author(s):  
Vojtěch Šimon

Abstract 4U 1608–52 is a soft X-ray transient. The analysis presented here of a particular part of its X-ray activity uses observations of RXTE/ASM and Swift/BAT. We show a time segment (MJD 54262–MJD 55090) (828 d) in which 4U 1608–52 behaved as a quasi-persistent X-ray source with a series of bumps, with a complicated relation between the evolution of fluxes in the soft (1.5–12 keV) and the hard (15–50 keV) X-ray regions. We ascribe these bumps to a series of propagations of heating and cooling fronts over the inner disk region without any transitions to the true quiescence. 4U 1608–52 oscillated around the boundary between the dominance of the Comptonized component and the dominance of the multicolor accretion disk in its luminosity. Only some of the bumps in this series were accompanied by a transition from the hard to the soft state; if it occurred, it displayed a strong hysteresis effect. The hard-band emission with the dominant Comptonized component was present for most of this active state and showed a cycle of about 40 d. We argue that the cyclic variations of flux come from the inner disk region, not, e.g., from a jet. We also discuss the observed behavior of 4U 1608–52 in the context of other quasi-persistent low-mass X-ray binaries.


2020 ◽  
Vol 501 (1) ◽  
pp. 168-178
Author(s):  
Chen Li ◽  
Guobao Zhang ◽  
Mariano Méndez ◽  
Jiancheng Wang ◽  
Ming Lyu

ABSTRACT We have found and analysed 16 multipeaked type-I bursts from the neutron-star low-mass X-ray binary 4U 1636 − 53 with the Rossi X-ray Timing Explorer (RXTE). One of the bursts is a rare quadruple-peaked burst that was not previously reported. All 16 bursts show a multipeaked structure not only in the X-ray light curves but also in the bolometric light curves. Most of the multipeaked bursts appear in observations during the transition from the hard to the soft state in the colour–colour diagram. We find an anticorrelation between the second peak flux and the separation time between two peaks. We also find that in the double-peaked bursts the peak-flux ratio and the temperature of the thermal component in the pre-burst spectra are correlated. This indicates that the double-peaked structure in the light curve of the bursts may be affected by enhanced accretion rate in the disc, or increased temperature of the neutron star.


1857 ◽  
Vol 3 ◽  
pp. 294-295
Author(s):  
Robert Harkness

The author remarks that the existence of Annelida during the Palæozoic formations is manifested in two conditions. In the one, we have the shelly envelope which invests the order Tubicola, in the form of Seapolites; and in the other, the tracks of the orders Abranchia and Dorsi-branchiata are found impressed on deposits which were, at one time, in a sufficiently soft state to receive the impressions of the wanderings of these animals.Among the strata which have hitherto afforded annelid tracks, those which, in the county of Clare, represent a portion of the equivalents of the Millstone Grit, contain such tracks, in their most perfect state of preservation in great abundance; and these strata also furnish evidence concerning the circumstances which prevailed during their deposition.


2020 ◽  
Vol 492 (4) ◽  
pp. 5271-5279 ◽  
Author(s):  
Nick Higginbottom ◽  
Christian Knigge ◽  
Stuart A Sim ◽  
Knox S Long ◽  
James H Matthews ◽  
...  

ABSTRACT X-ray signatures of outflowing gas have been detected in several accreting black hole binaries, always in the soft state. A key question raised by these observations is whether these winds might also exist in the hard state. Here, we carry out the first full-frequency radiation hydrodynamic simulations of luminous (${L = 0.5 \, L_{\mathrm{\mathrm{ Edd}}}}$) black hole X-ray binary systems in both the hard and the soft state, with realistic spectral energy distributions (SEDs). Our simulations are designed to describe X-ray transients near the peak of their outburst, just before and after the hard-to-soft state transition. At these luminosities, it is essential to include radiation driving, and we include not only electron scattering, but also photoelectric and line interactions. We find powerful outflows with ${\dot{M}_{\mathrm{ wind}} \simeq 2 \, \dot{M}_{\mathrm{ acc}}}$ are driven by thermal and radiation pressure in both hard and soft states. The hard-state wind is significantly faster and carries approximately 20 times as much kinetic energy as the soft-state wind. However, in the hard state the wind is more ionized, and so weaker X-ray absorption lines are seen over a narrower range of viewing angles. Nevertheless, for inclinations ≳80°, blueshifted wind-formed Fe xxv and Fe xxvi features should be observable even in the hard state. Given that the data required to detect these lines currently exist for only a single system in a luminous hard state – the peculiar GRS 1915+105 – we urge the acquisition of new observations to test this prediction. The new generation of X-ray spectrometers should be able to resolve the velocity structure.


2020 ◽  
Vol 890 (1) ◽  
pp. 53 ◽  
Author(s):  
Navin Sridhar ◽  
Javier A. García ◽  
James F. Steiner ◽  
Riley M. T. Connors ◽  
Victoria Grinberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document