Imaging Spectroscopy for the Non-invasive Investigation of Paintings

Author(s):  
A. Casini ◽  
F. Lotti ◽  
M. Picollo

2022 ◽  
Vol 10 (1) ◽  
Author(s):  
Roxanne Radpour ◽  
Glenn A. Gates ◽  
Ioanna Kakoulli ◽  
John K. Delaney

AbstractImaging spectroscopy (IS) is an important tool in the comprehensive technical analysis required of archaeological paintings. The complexity of pigment mixtures, diverse artistic practices and painting technologies, and the often-fragile and weathered nature of these objects render macroscale, non-invasive chemical mapping an essential component of the analytical protocol. Furthermore, the use of pigments such as Egyptian blue and madder lake, featuring diagnostic photoluminescence emission, provides motivation to perform photoluminescence mapping on the macroscale. This work demonstrates and advances new applications of dual-mode imaging spectroscopy and data analysis approaches for ancient painting. Both reflectance (RIS) and luminescence (LIS) modes were utilized for the study of a Roman Egyptian funerary portrait from second century CE Egypt. The first derivative of the RIS image cube was analyzed and found to significantly improve materials separation, identification, and the extent of mapping. Egyptian blue and madder lake were mapped across a decorated surface using their luminescence spectral signatures in the region of 540–1000 nm as endmembers in LIS analyses. Linear unmixing of the LIS endmembers and subsequent derivative analyses resulted in an improved separation and mapping of the luminescence pigments. RIS and LIS studies, combined with complementary, single-spot collection elemental and molecular spectroscopy, were able to successfully characterize the portrait’s painting materials and binding media used by the ancient artist, providing key insight into their material use, stylistic practices, and technological choices.



Heritage ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 4372-4400
Author(s):  
Anna Piccolo ◽  
Emanuele Bonato ◽  
Laura Falchi ◽  
Paola Lucero-Gómez ◽  
Elisabetta Barisoni ◽  
...  

A multi-analytical approach has been employed to investigate the painting Natura Morta (1954–1955) by Andreina Rosa (1924–2019) to assess the state of conservation and to understand more about the painting materials and techniques of this artwork, which was recently donated by the painter’s heirs to the International Gallery of Modern Art Ca’ Pesaro (Venice-Italy). A comprehensive and systematic diagnostic campaign was carried out, mainly adopting non-invasive imaging and spectroscopic methods, such as technical photography, optical microscopy, hyperspectral imaging spectroscopy (HIS), fiber optics reflectance spectroscopy (FORS), External Reflectance Fourier Transform Infrared (ER-FTIR), and Raman spectroscopies. Microsamples, collected from the edges of the canvas in areas partially detached, were studied by Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) spectroscopy and Gas Chromatography-Mass Spectrometry (GC-MS). By crossing the information gained, it was possible to make inferences about the composition of the groundings and the painted layers, the state of conservation of the artwork, and the presence of degradation phenomena. Hence, the present study may be of interest for conservation purposes as well as for enhancing the artistic activity of Andreina Rosa. The final aim was to provide useful information for the Gallery which recently included this painting in its permanent collection.



Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7125
Author(s):  
Silvia Rita Amato ◽  
Aviva Burnstock ◽  
Anne Michelin

This paper presents results from the examination of a set of experimental samples using fibre optic reflectance spectroscopy (FORS) and diffuse reflectance imaging spectroscopy in the short-wave infrared (SWIR) range, combined with statistical analysis of the data for the discrimination and mapping of poppy and linseed oil. The aim was to evaluate the efficacy of this non-invasive approach for the study of paint samples with a view to the application of the method for characterisation of the two drying oils in painted art. The approach allowed discrimination between the two drying oils based on FORS spectra and the hyperspectral cube, indicating the influence of the spectral region around 1700 nm on the statistical discrimination based on the anti-symmetric and symmetric first overtone stretching of methylenic CH2 groups. This method is being studied as a potential non-invasive method of organic analysis of oil types that have formerly been studied using gas chromatography-mass spectrometry (GC-MS), which requires micro-samples.



2018 ◽  
Vol 138 ◽  
pp. 162-172 ◽  
Author(s):  
Stijn Legrand ◽  
Paola Ricciardi ◽  
Luca Nodari ◽  
Koen Janssens


2011 ◽  
Author(s):  
E. Rebollo ◽  
F. Ratti ◽  
G. M. Cortelazzo ◽  
L. Poletto ◽  
R. Bertoncello


Antiquity ◽  
2014 ◽  
Vol 88 (339) ◽  
pp. 173-190 ◽  
Author(s):  
Wolfgang Neubauer ◽  
Christian Gugl ◽  
Markus Scholz ◽  
Geert Verhoeven ◽  
Immo Trinks ◽  
...  

Sophisticated techniques of archaeological survey, including airborne imaging spectroscopy, electromagnetic induction and ground-penetrating radar, are opening up new horizons in the non-invasive exploration of archaeological sites. One location where they have yielded spectacular results is Carnuntum in Austria, on the south bank of the Danube, capital of the key Roman province of Pannonia. Excavations in the late nineteenth and twentieth centuries revealed many of the major elements of this extensive complex, including the legionary fortress and the civilian town or municipium. Excavation, however, is no longer the only way of recovering and recording the details of these buried structures. In 2011, a combination of non-invasive survey methods in the area to the south of the civilian town, where little was visible on the surface, led to the dramatic discovery of remains interpreted as a gladiatorial school, complete with individual cells for the gladiators and a circular training arena. The combination of techniques has led to the recording and visualisation of the buried remains in astonishing detail, and the impact of the discovery is made all the greater by the stunning reconstruction images that the project has generated.





Author(s):  
H.W. Deckman ◽  
B.F. Flannery ◽  
J.H. Dunsmuir ◽  
K.D' Amico

We have developed a new X-ray microscope which produces complete three dimensional images of samples. The microscope operates by performing X-ray tomography with unprecedented resolution. Tomography is a non-invasive imaging technique that creates maps of the internal structure of samples from measurement of the attenuation of penetrating radiation. As conventionally practiced in medical Computed Tomography (CT), radiologists produce maps of bone and tissue structure in several planar sections that reveal features with 1mm resolution and 1% contrast. Microtomography extends the capability of CT in several ways. First, the resolution which approaches one micron, is one thousand times higher than that of the medical CT. Second, our approach acquires and analyses the data in a panoramic imaging format that directly produces three-dimensional maps in a series of contiguous stacked planes. Typical maps available today consist of three hundred planar sections each containing 512x512 pixels. Finally, and perhaps of most import scientifically, microtomography using a synchrotron X-ray source, allows us to generate maps of individual element.



2001 ◽  
Vol 120 (5) ◽  
pp. A266-A266
Author(s):  
R BUTLER ◽  
B ZACHARAKIS ◽  
D MOORE ◽  
K CRAWFORD ◽  
G DAVIDSON ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document