Antimicrobial Peptides as First-Line Effector Molecules of the Human Innate Immune System

Author(s):  
Regine Gläser ◽  
Jürgen Harder ◽  
Jens-Michael Schröder
Acta Naturae ◽  
2015 ◽  
Vol 7 (1) ◽  
pp. 37-47 ◽  
Author(s):  
P. V. Panteleev ◽  
I. A. Bolosov ◽  
S. V. Balandin ◽  
T. V. Ovchinnikova

Antimicrobial peptides (AMPs) are evolutionarily ancient factors of the innate immune system that serve as a crucial first line of defense for humans, animals, and plants against infection. This review focuses on the structural organization, biosynthesis, and biological functions of AMPs that possess a -hairpin spatial structure. Representatives of this class of AMPs are among the most active antibiotic molecules of animal origin. Due to their wide spectrum of activity and resistance to internal environmental factors, natural -hairpin AMPbased compounds might become the most promising drug candidates.


2009 ◽  
pp. 241-275 ◽  
Author(s):  
Valerie Smith ◽  
Jorge Fernandes

Microbiology ◽  
2006 ◽  
Vol 152 (2) ◽  
pp. 285-293 ◽  
Author(s):  
Gavin K. Paterson ◽  
Tim J. Mitchell

The innate immune system provides a non-specific first line of defence against microbes and is crucial both in the development and effector stages of subsequent adaptive immune responses. Consistent with its importance, study of the innate immune system is a broad and fast-moving field. Here we provide an overview of the recent key advances made in this area with relation to the important pathogen Streptococcus pneumoniae (the pneumococcus).


2019 ◽  
Vol 12 (6) ◽  
pp. dmm037721 ◽  
Author(s):  
Mayo Araki ◽  
Massanori Kurihara ◽  
Suzuko Kinoshita ◽  
Rie Awane ◽  
Tetsuya Sato ◽  
...  

Antibiotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 94 ◽  
Author(s):  
Ashley S. Brott ◽  
Anthony J. Clarke

The peptidoglycan sacculus of both Gram-positive and Gram-negative bacteria acts as a protective mesh and provides structural support around the entirety of the cell. The integrity of this structure is of utmost importance for cell viability and so naturally is the first target for attack by the host immune system during bacterial infection. Lysozyme, a muramidase and the first line of defense of the innate immune system, targets the peptidoglycan sacculus hydrolyzing the β-(1→4) linkage between repeating glycan units, causing lysis and the death of the invading bacterium. The O-acetylation of N-acetylmuramoyl residues within peptidoglycan precludes the productive binding of lysozyme, and in doing so renders it inactive. This modification has been shown to be an important virulence factor in pathogens such as Staphylococcus aureus and Neisseria gonorrhoeae and is currently being investigated as a novel target for anti-virulence therapies. This article reviews interactions made between peptidoglycan and the host immune system, specifically with respect to lysozyme, and how the O-acetylation of the peptidoglycan interrupts these interactions, leading to increased pathogenicity.


Tequio ◽  
2018 ◽  
Vol 1 (2) ◽  
pp. 35-49
Author(s):  
Yobana Pérez-Cervera ◽  
Rafael Torres Rosas

The innate immune system is the first line of defense involved in protecting against external pathogens and is crucial for survival. However, uncontrolled activation of the immune system can result in more damage than the factor that triggered them, causing atrophic scarring, chronic inflammation and even Systemic inflammation events such as Lupus, arthritis, Crohn’s disease or sepsis. Fortunately, there are neuronal mechanisms of inflammatory control which could be part of new therapeutic strategies to be studied for a better control of this type of pathologies. In the last decade, the cholinergic pathway has been described as part of the neuronal mechanisms that can be exogenous activated for the non-pharmacological control of inflammatory diseases, the aim of this review is to present the evidence in basic research and encourage the research in medical practice.


2021 ◽  
Vol 12 ◽  
Author(s):  
Richard Felix Kraus ◽  
Michael Andreas Gruber

Neutrophils (polymorphonuclear cells; PMNs) form a first line of defense against pathogens and are therefore an important component of the innate immune response. As a result of poorly controlled activation, however, PMNs can also mediate tissue damage in numerous diseases, often by increasing tissue inflammation and injury. According to current knowledge, PMNs are not only part of the pathogenesis of infectious and autoimmune diseases but also of conditions with disturbed tissue homeostasis such as trauma and shock. Scientific advances in the past two decades have changed the role of neutrophils from that of solely immune defense cells to cells that are responsible for the general integrity of the body, even in the absence of pathogens. To better understand PMN function in the human organism, our review outlines the role of PMNs within the innate immune system. This review provides an overview of the migration of PMNs from the vascular compartment to the target tissue as well as their chemotactic processes and illuminates crucial neutrophil immune properties at the site of the lesion. The review is focused on the formation of chemotactic gradients in interaction with the extracellular matrix (ECM) and the influence of the ECM on PMN function. In addition, our review summarizes current knowledge about the phenomenon of bidirectional and reverse PMN migration, neutrophil microtubules, and the microtubule organizing center in PMN migration. As a conclusive feature, we review and discuss new findings about neutrophil behavior in cancer environment and tumor tissue.


Author(s):  
Malini Bhole

Neutrophils are an important component of the innate immune system, forming the first line of defence against bacterial invasion. Abnormalities in either neutrophil numbers or function lead to immunodeficiency disorders affecting the innate immune system, with a predisposition towards developing serious and often life-threatening infections. Alterations in neutrophil numbers and function may also be noted secondary to systemic diseases, where they may act as markers for ongoing disease processes. Most of the primary neutrophil disorders discussed in this chapter will present in childhood. In adults, acquired neutropenia is the commonest neutrophil abnormality encountered in clinical practice, although, rarely, some primary neutrophil defects may present.


2011 ◽  
Vol 32 (2) ◽  
pp. 143-171 ◽  
Author(s):  
Mukesh Pasupuleti ◽  
Artur Schmidtchen ◽  
Martin Malmsten

2016 ◽  
Vol 397 (9) ◽  
pp. 939-945 ◽  
Author(s):  
Mohammad Reza Bolouri Moghaddam ◽  
Miray Tonk ◽  
Christine Schreiber ◽  
Denise Salzig ◽  
Peter Czermak ◽  
...  

Abstract Antimicrobial peptides (AMPs) are ubiquitous components of the insect innate immune system. The model insect Galleria mellonella has at least 18 AMPs, some of which are still uncharacterized in terms of antimicrobial activity. To determine why G. mellonella secretes a repertoire of distinct AMPs following an immune challenge, we selected three different AMPs: cecropin A (CecA), gallerimycin and cobatoxin. We found that cobatoxin was active against Micrococcus luteus at a minimum inhibitory concentration (MIC) of 120 μm, but at 60 μm when co-presented with 4 μm CecA. In contrast, the MIC of gallerimycin presented alone was 60 μm and the co-presentation of CecA did not affect this value. Cobatoxin and gallerimycin were both inactive against Escherichia coli at physiological concentrations, however gallerimycin could potentiate the sublethal dose of CecA (0.25 μm) at a concentration of 30 μm resulting in 100% lethality. The ability of gallerimycin to potentiate the CecA was investigated by flow cytometry, revealing that 30 μm gallerimycin sensitized E. coli cells by inducing membrane depolarization, which intensified the otherwise negligible effects of 0.25 μm CecA. We therefore conclude that G. mellonella maximizes the potential of its innate immune response by the co-presentation of different AMPs that become more effective at lower concentrations when presented simultaneously.


Sign in / Sign up

Export Citation Format

Share Document