Case Study, USIQUICK Project: Methods to Capitalise and Reuse Knowledge in Process Planning

Author(s):  
Alexandre Candlot ◽  
Nicolas Perry ◽  
Alain Bernard ◽  
Samar Ammar-Khodja
Keyword(s):  
Author(s):  
Shaw C. Feng ◽  
William Z. Bernstein ◽  
Thomas Hedberg ◽  
Allison Barnard Feeney

The need for capturing knowledge in the digital form in design, process planning, production, and inspection has increasingly become an issue in manufacturing industries as the variety and complexity of product lifecycle applications increase. Both knowledge and data need to be well managed for quality assurance, lifecycle impact assessment, and design improvement. Some technical barriers exist today that inhibit industry from fully utilizing design, planning, processing, and inspection knowledge. The primary barrier is a lack of a well-accepted mechanism that enables users to integrate data and knowledge. This paper prescribes knowledge management to address a lack of mechanisms for integrating, sharing, and updating domain-specific knowledge in smart manufacturing (SM). Aspects of the knowledge constructs include conceptual design, detailed design, process planning, material property, production, and inspection. The main contribution of this paper is to provide a methodology on what knowledge manufacturing organizations access, update, and archive in the context of SM. The case study in this paper provides some example knowledge objects to enable SM.


2019 ◽  
Vol 293 ◽  
pp. 02002 ◽  
Author(s):  
Kasin Ransikarbum ◽  
Rapeepan Pitakaso ◽  
Namhun Kim

Whereas Subtractive Manufacturing (SM) is a process by which 3D objects are constructed by cutting material away from a solid block of material, such as milling and lathe machine; Additive Manufacturing (AM) is a synonym for 3D printing and other processes by which 3D objects are constructed by successively depositing material in layers. Recently, AM has become widespread for both industrial and personal use thanks to the freedom and benefits it provides in designing parts, reducing lead time, improving inventory, and supply chain. However, few studies examine process planning issues in AM. In addition, existing studies focus on production of an individual part alone. In this study, we examine the assembly orientation alternatives’ efficiency using Data Envelopment Analysis (DEA) technique for different AM technologies and their associated materials under conflicting criteria. A case study of hardware fasteners using bolt and nut fabrication is illustrated in the study. Our results show that different AM technologies and materials clearly impact efficiency of part production and thus suggest optimal orientation in AM process planning platform.


Author(s):  
KARSTEN SCHIERHOLT

Product configuration is the process of generating a product variant from a previously defined product family model and additional product specifications for this variant. The process of finding and sequencing the relevant operations for manufacturing this product is called process planning. This article combines the two principles in a new concept of process configuration that solves the process planning task using product configuration methods. The second section develops characteristics for two process configuration concepts, the interactive process configuration and the automation-based process configuration. Following an overview of the implementation of a process configuration system, the results of a case study in the aluminum rolling industry are presented. The main benefits of the process configuration concept are observed in a reduced knowledge-maintenance effort and in increased problem-solving speed.


Author(s):  
Fatimazahra Guini ◽  
Abdellah El Barkany ◽  
Abdelouahhab Jabri ◽  
El Hassan Irhirane

The process planning of a product represents in the manufacturing industry a major element that determines the level of economic performance of the company. The development and evaluation of process planning during the industrialization phase of a product can cause problems of quality, cost or manufacturing time. Therefore, process planning needs to be evaluated early, during the design phase. The aim of this article is to propose to a manufacturing company a hybrid approach of multicriterion decision support, allowing evaluating the concepts proposed by the designer to choose the best concept having the best industrial performance indicators, and to take into account the opinions of experts from different departments of the company. The multicriterion choice is made by the hybridization of the ROC method and the PROMETHEE method, and the decision criteria are indicators that express the performance of a process planning. Then, to illustrate the capacity of the model, a case study of a product is presented.


2017 ◽  
Vol 24 (s1) ◽  
pp. 38-45 ◽  
Author(s):  
Mariusz Deja ◽  
Mieczysław Siemiątkowski ◽  
P. Sender

Abstract The focus of this paper is on process planning for large parts manufacture in systems of definite process capabilities, involving the use of multi-axis machining centres. The analysis of machining heavy mechanical components used in off-shore constructions has been carried out. Setup concepts applied and operation sequences determined in related process plans underwent studies. The paper presents in particular a reasoning approach to setup sequencing and machine assignment in manufacturing large-size components of offshore constructions. The relevant reasoning mechanism within a decision making scheme on generated process plan is shown based on a case study derived from the offshore sector. Recommendations for manufacture of selected exemplary and typical parts were formulated.


2008 ◽  
Vol 31 (1) ◽  
pp. 102-117
Author(s):  
Eliab Z Opiyo

Process planning is part of the general product development and production process that usually follows design and precedes manufacturing. Manufacturability and process planning information in general play central role in many product development and production activities, including paradoxically, conceptual and detail design - the activities that take place before process planning. The need of conducting some of the process planning activities formally before or during design is thus rather obvious. One of the main research issues is therefore the identification of the process planning activities that can be performed before the traditional process planning phase and handling of the process planning information so as to adequately provide the designers with the manufacturability informationneeded during conceptual and detail design. Another issue is how to support collaboration during process planning and how to maintain continuity of the process planning tasks. This paper suggests the decentralization of the process planning task and proposes the execution of the process planning activities in a piecemeal fashion, starting right afterreceiving an order and specifying the requirements for a product. Process planning under the proposed procedure consists of six semi-autonomous sub-phases, some of which comprise activities that must be conducted prior to the process planning phase. This helps to overcome the problem of timely availability of manufacturability information during the execution of upstream and downstream product development and production activities. The paper alsoproposes a computer-based method of handling the manufacturability information generated in various stages of the product development and production process. A database design and structure of prototype software that manages the process planning information are presented and discussed. Furthermore, a case study conducted to explore howthe proposed process planning procedure could be put in use is presented and discussed.


Author(s):  
Pravin Khurana ◽  
Dusan N. Sormaz ◽  
Raghunath Khetan

Integration of CAD (Computer Aided Design), CAPP (Computer Aided Process Planning) and Process Modeling activities plays a vital role in enabling concurrent product and process design. Typically each of these functions is performed in its own dedicated software environment. The integration will require interfacing several disconnected processes and software components built in different languages, and platforms. This paper presents an integration methodology, validated using a case study, in which a steering housing was analyzed and its process planning and design tasks were integrated using several software tools. The first integration task was to generate a feature based CAD model (in Unigraphics) and map these design features to a set of manufacturing features. Feature based design was performed using the Horizontal Modeling™ approach developed at Delphi. Features developed using this approach were then mapped to manufacturing features using APPS, a software tool developed at Delphi Dynamics and Propulsion Innovation Center. This task involved interrogation of the geometric CAD model to generate geometric and tolerance information and represent them in a format suitable for feature-based process planning. The second task of integration is generation of feasible “production-intent” process plans. This task is performed using APPS and IMPlanner process planner, a knowledge based software tool developed at Ohio University. The third and final task of integration is automated generation of in-process CAD models. This task involved the integration of Delphi process design techniques to generate CAD models (in Unigraphics) to represent the component at each stage of the manufacturing process. Evaluation of these steps through the case study has identified the strengths and weaknesses of the proposed integration methodology, which is reported in this paper.


Sign in / Sign up

Export Citation Format

Share Document