Inhibition of Sonic Hedgehog signaling reduces tumor growth in pancreatic cancer in vitro and in vivo

Author(s):  
M. Bahra ◽  
U. P. Neumann ◽  
D. Jacob ◽  
S. Boas-Knoop ◽  
A. Koch
Development ◽  
2001 ◽  
Vol 128 (24) ◽  
pp. 4993-5004
Author(s):  
Nathalie Spassky ◽  
Katharina Heydon ◽  
Arnaud Mangatal ◽  
Alexandar Jankovski ◽  
Christelle Olivier ◽  
...  

Most studies on the origin of oligodendrocyte lineage have been performed in the spinal cord. By contrast, molecular mechanisms that regulate the appearance of the oligodendroglial lineage in the brain have not yet attracted much attention. We provide evidence for three distinct sources of oligodendrocytes in the mouse telencephalon. In addition to two subpallial ventricular foci, the anterior entopeduncular area and the medial ganglionic eminence, the rostral telencephalon also gives rise to oligodendrocytes. We show that oligodendrocytes in the olfactory bulb are generated within the rostral pallium from ventricular progenitors characterized by the expression of Plp. We provide evidence that these Plp oligodendrocyte progenitors do not depend on signal transduction mediated by platelet-derived growth factor receptors (PDGFRs), and therefore propose that they belong to a different lineage than the PDGFRα-expressing progenitors. Moreover, induction of oligodendrocytes in the telencephalon is dependent on sonic hedgehog signaling, as in the spinal cord. In all these telencephalic ventricular territories, oligodendrocyte progenitors were detected at about the same developmental stage as in the spinal cord. However, both in vivo and in vitro, the differentiation into O4-positive pre-oligodendrocytes was postponed by 4-5 days in the telencephalon in comparison with the spinal cord. This delay between determination and differentiation appears to be intrinsic to telencephalic oligodendrocytes, as it was not shortened by diffusible or cell-cell contact factors present in the spinal cord.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Mingxia Wang ◽  
Shangling Zhu ◽  
Weixiang Peng ◽  
Qiuxia Li ◽  
Zhaoxia Li ◽  
...  

Sonic hedgehog (Shh) signaling controls many aspects of human development, regulates cell growth and differentiation in adult tissues, and is activated in a number of malignancies. Rheumatoid arthritis (RA) is characterized by chronic synovitis and pannus formation associated with activation of fibroblast-like synoviocytes (FLS). We investigated whether Shh signaling plays a role in the proliferation of FLS in RA. Expression of Shh signaling related components (Shh, Ptch1, Smo, and Gli1) in RA synovial tissues was examined by immunohistochemistry (IHC) and in FLS by IHC, immunofluorescence (IF), quantitative RT-PCR, and western blotting. Expression of Shh, Smo, and Gli1 in RA synovial tissue was higher than that in control tissue (P<0.05). Cyclopamine (a specific inhibitor of Shh signaling) decreased mRNA expression of Shh, Ptch1, Smo, and Gli1 in cultured RA FLS, Shh, and Smo protein expression, and significantly decreased FLS proliferation. Flow cytometry analysis suggested that cyclopamine treatment resulted in cell cycle arrest of FLS in G1phase. Our data show that Shh signaling is activated in synovium of RA patientsin vivoand in cultured FLS form RA patientsin vitro, suggesting a role in the proliferation of FLS in RA. It may therefore be a novel therapeutic target in RA.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Do Luong Huynh ◽  
Hyebin Koh ◽  
Nisansala Chandimali ◽  
Jiao Jiao Zhang ◽  
Nameun Kim ◽  
...  

Pancreatic cancer has a poor survival rate as compared to other types of cancer. Surface marker CD44 plays important role in epithelial-mesenchymal transition and cancer stem cell phenotype. Therefore, targeting CD44 positive pancreatic cancer cells might enhance therapies effectiveness. Our previous studies indicated the antitumorigenesis effect of BRM270 in osteosarcoma, lung cancer, and glioblastoma; however there is no evidence on BRM270 impacts on pancreatic cancer growth. In this study, we investigated the effect of BRM270 on the isolated CD44 positive pancreatic ductal adenocarcinoma cells (CD44+PDAC). Results showed that CD44 positive cells undergo apoptosis induced by BRM270. Moreover, BRM270 also inhibits stemness and metastasis traits in CD44+PDAC via Sonic hedgehog signaling pathway and SALL4 expression.In vivostudy indicated that tumor growth derived from CD44+PDAC was suppressed as daily uptake by BRM270 5 mg/kg. These data suggest the alternative approach in antipancreatic tumorigenesis via herbal plants extract and selectively targeting CD44+PDAC cells in tumor.


Cancers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 254 ◽  
Author(s):  
Vincent Drubay ◽  
Nicolas Skrypek ◽  
Lucie Cordiez ◽  
Romain Vasseur ◽  
Céline Schulz ◽  
...  

Pancreatic adenocarcinoma (PDAC) is one of the most deadly cancers in the Western world because of a lack of early diagnostic markers and efficient therapeutics. At the time of diagnosis, more than 80% of patients have metastasis or locally advanced cancer and are therefore not eligible for surgical resection. Pancreatic cancer cells also harbour a high resistance to chemotherapeutic drugs such as gemcitabine that is one of the main palliative treatments for PDAC. Proteins involved in TGF-β signaling pathway (SMAD4 or TGF-βRII) are frequently mutated in PDAC (50–80%). TGF-β signalling pathway plays antagonistic roles during carcinogenesis by initially inhibiting epithelial growth and later promoting the progression of advanced tumors and thus emerged as both tumor suppressor and oncogenic pathways. In order to decipher the role of TGF-β in pancreatic carcinogenesis and chemoresistance, we generated CAPAN-1 and CAPAN-2 cell lines knocked down for TGF-βRII (first actor of TGF-β signaling). The impact on biological properties of these TGF-βRII-KD cells was studied both in vitro and in vivo. We show that TGF-βRII silencing alters tumor growth and migration as well as resistance to gemcitabine. TGF-βRII silencing also leads to S727 STAT3 and S63 c-Jun phosphorylation, decrease of MRP3 and increase of MRP4 ABC transporter expression and induction of a partial EMT phenotype. These markers associated with TGF-β signaling pathways may thus appear as potent therapeutic tools to better treat/manage pancreatic cancer.


2020 ◽  
Vol 18 (3.5) ◽  
pp. PCL20-116
Author(s):  
Cintia Yoko Morioka ◽  
Marcel Cerqueira Cesar Machado ◽  
Jose Pinhata Otoch ◽  
Luma Princess Schneider ◽  
Edgard Mesquita Rodrigues Lima ◽  
...  

Nutrients ◽  
2017 ◽  
Vol 9 (4) ◽  
pp. 331 ◽  
Author(s):  
Concetta Panebianco ◽  
Kaarel Adamberg ◽  
Signe Adamberg ◽  
Chiara Saracino ◽  
Madis Jaagura ◽  
...  

2021 ◽  
Author(s):  
Cayla E Jewett ◽  
Bailey L McCurdy ◽  
Eileen T O'Toole ◽  
Katherine S Given ◽  
Carrie H Lin ◽  
...  

Primary cilia are signaling organelles essential for development and homeostasis. Loss of primary cilia is lethal, and decreased or defective cilia cause multisystemic conditions called ciliopathies. Down syndrome shares clinical overlap with ciliopathies. We previously showed that trisomy 21 diminishes primary cilia formation and function due to elevated Pericentrin, a centrosome protein encoded on chromosome 21. Pericentrin is mislocalized, creating aggregates that disrupt pericentrosomal trafficking and microtubule organization. Here, we examine the cilia-related molecules and pathways disrupted in trisomy 21 and their in vivo phenotypic relevance. Utilizing ciliogenesis time course experiments, we reveal how Pericentrin, microtubule networks, and components of ciliary vesicles are reorganized for ciliogenesis in euploid cells. Early in ciliogenesis, chromosome 21 polyploidy results in elevated Pericentrin and microtubule networks away from the centrosome that ensnare MyosinVA and EHD1, blocking mother centriole uncapping that is essential for ciliogenesis. Ciliated trisomy 21 cells have persistent trafficking defects that reduce transition zone protein localization, which is critical for Sonic hedgehog signaling. Sonic hedgehog signaling is decreased and anticorrelates with Pericentrin levels in trisomy 21 primary mouse embryonic fibroblasts. Finally, we observe decreased ciliation in vivo. A mouse model of Down syndrome with elevated Pericentrin has fewer primary cilia in cerebellar granule neuron progenitors and thinner external granular layers. Our work reveals that elevated Pericentrin in trisomy 21 disrupts multiple early steps of ciliogenesis and creates persistent trafficking defects in ciliated cells. This pericentrosomal crowding results in signaling defects consistent with the neurological deficits found in individuals with Down syndrome.


2019 ◽  
Vol 19 (5) ◽  
pp. 326-334
Author(s):  
Lu Huang ◽  
Marco Tjakra ◽  
Desha Luo ◽  
Lin Wen ◽  
Daoxi Lei ◽  
...  

Background: In vertebrates, cilium is crucial for Hedgehog signaling transduction. Forkhead box transcriptional factor FoxF1 is reported to be associated with Sonic Hedgehog (Shh) signaling in many cases. However, the role of FoxF1 in cilium remains unknown. Here, we showed an essential role of FoxF1 in the regulation of ciliogenesis and in the distribution of Shh signaling components in cilium. Methods: NIH/3T3 cells were serum starved for 24h to induce cilium. Meanwhile, shRNA was used to knockdown the FoxF1 expression in the cells and CRISPR/Cas9 was used to generate the FoxF1 zebrafish mutant. The mRNA and protein expression of indicated genes were detected by the qRT-PCR and western blot, respectively. Immunofluorescence staining was performed to detect the cilium and Shh components distribution. Results: FoxF1 knockdown decreased the cilium length in NIH/3T3 cells. Meanwhile, the disruption of FoxF1 function inhibited the expression of cilium-related genes and caused an abnormal distribution of Shh components in the cilium. Furthermore, homozygous FoxF1 mutants exhibited defective development of pronephric cilium in early zebrafish embryos. Conclusion: Together, our data illustrated that FoxF1 is required for ciliogenesis in vitro and in vivo and for the proper localization of Shh signaling components in cilium.


Sign in / Sign up

Export Citation Format

Share Document