scholarly journals Sonic Hedgehog Signaling Drives Proliferation of Synoviocytes in Rheumatoid Arthritis: A Possible Novel Therapeutic Target

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Mingxia Wang ◽  
Shangling Zhu ◽  
Weixiang Peng ◽  
Qiuxia Li ◽  
Zhaoxia Li ◽  
...  

Sonic hedgehog (Shh) signaling controls many aspects of human development, regulates cell growth and differentiation in adult tissues, and is activated in a number of malignancies. Rheumatoid arthritis (RA) is characterized by chronic synovitis and pannus formation associated with activation of fibroblast-like synoviocytes (FLS). We investigated whether Shh signaling plays a role in the proliferation of FLS in RA. Expression of Shh signaling related components (Shh, Ptch1, Smo, and Gli1) in RA synovial tissues was examined by immunohistochemistry (IHC) and in FLS by IHC, immunofluorescence (IF), quantitative RT-PCR, and western blotting. Expression of Shh, Smo, and Gli1 in RA synovial tissue was higher than that in control tissue (P<0.05). Cyclopamine (a specific inhibitor of Shh signaling) decreased mRNA expression of Shh, Ptch1, Smo, and Gli1 in cultured RA FLS, Shh, and Smo protein expression, and significantly decreased FLS proliferation. Flow cytometry analysis suggested that cyclopamine treatment resulted in cell cycle arrest of FLS in G1phase. Our data show that Shh signaling is activated in synovium of RA patientsin vivoand in cultured FLS form RA patientsin vitro, suggesting a role in the proliferation of FLS in RA. It may therefore be a novel therapeutic target in RA.

Development ◽  
2001 ◽  
Vol 128 (24) ◽  
pp. 4993-5004
Author(s):  
Nathalie Spassky ◽  
Katharina Heydon ◽  
Arnaud Mangatal ◽  
Alexandar Jankovski ◽  
Christelle Olivier ◽  
...  

Most studies on the origin of oligodendrocyte lineage have been performed in the spinal cord. By contrast, molecular mechanisms that regulate the appearance of the oligodendroglial lineage in the brain have not yet attracted much attention. We provide evidence for three distinct sources of oligodendrocytes in the mouse telencephalon. In addition to two subpallial ventricular foci, the anterior entopeduncular area and the medial ganglionic eminence, the rostral telencephalon also gives rise to oligodendrocytes. We show that oligodendrocytes in the olfactory bulb are generated within the rostral pallium from ventricular progenitors characterized by the expression of Plp. We provide evidence that these Plp oligodendrocyte progenitors do not depend on signal transduction mediated by platelet-derived growth factor receptors (PDGFRs), and therefore propose that they belong to a different lineage than the PDGFRα-expressing progenitors. Moreover, induction of oligodendrocytes in the telencephalon is dependent on sonic hedgehog signaling, as in the spinal cord. In all these telencephalic ventricular territories, oligodendrocyte progenitors were detected at about the same developmental stage as in the spinal cord. However, both in vivo and in vitro, the differentiation into O4-positive pre-oligodendrocytes was postponed by 4-5 days in the telencephalon in comparison with the spinal cord. This delay between determination and differentiation appears to be intrinsic to telencephalic oligodendrocytes, as it was not shortened by diffusible or cell-cell contact factors present in the spinal cord.


2019 ◽  
Vol 19 (5) ◽  
pp. 326-334
Author(s):  
Lu Huang ◽  
Marco Tjakra ◽  
Desha Luo ◽  
Lin Wen ◽  
Daoxi Lei ◽  
...  

Background: In vertebrates, cilium is crucial for Hedgehog signaling transduction. Forkhead box transcriptional factor FoxF1 is reported to be associated with Sonic Hedgehog (Shh) signaling in many cases. However, the role of FoxF1 in cilium remains unknown. Here, we showed an essential role of FoxF1 in the regulation of ciliogenesis and in the distribution of Shh signaling components in cilium. Methods: NIH/3T3 cells were serum starved for 24h to induce cilium. Meanwhile, shRNA was used to knockdown the FoxF1 expression in the cells and CRISPR/Cas9 was used to generate the FoxF1 zebrafish mutant. The mRNA and protein expression of indicated genes were detected by the qRT-PCR and western blot, respectively. Immunofluorescence staining was performed to detect the cilium and Shh components distribution. Results: FoxF1 knockdown decreased the cilium length in NIH/3T3 cells. Meanwhile, the disruption of FoxF1 function inhibited the expression of cilium-related genes and caused an abnormal distribution of Shh components in the cilium. Furthermore, homozygous FoxF1 mutants exhibited defective development of pronephric cilium in early zebrafish embryos. Conclusion: Together, our data illustrated that FoxF1 is required for ciliogenesis in vitro and in vivo and for the proper localization of Shh signaling components in cilium.


2020 ◽  
Vol 21 (12) ◽  
pp. 4423
Author(s):  
Sanghoon Lee ◽  
Hyo-Gu Kang ◽  
Pil-Soo Jeong ◽  
Tsevelmaa Nanjidsuren ◽  
Bong-Seok Song ◽  
...  

Brilliant cresyl blue (BCB) staining is used to select developmentally competent cumulus-oocyte complexes (COCs) for in vitro maturation (IVM). However, limited attention has been paid to what drives the higher developmental competence of BCB+ COCs. Sonic hedgehog signaling (SHH) is an important signaling pathway for ovarian follicular development and oocyte maturation. Therefore, this study investigated the effect of oocyte quality assessed by BCB staining on cumulus cell expansion, oocyte nuclear maturation, subsequent embryo development, apoptosis levels, and SHH signaling protein expression, in porcine COCs. After IVM, BCB+ COCs exhibited a significantly higher proportion of complete cumulus cell expansion and metaphase II rate in oocytes than BCB- COCs. After in vitro fertilization, the BCB+ group showed a significantly higher monospermy rate, fertilization efficiency, percentage of cleavage and blastocyst formation, with a higher total cell number and a lower apoptosis in blastocysts as compared with the BCB- group. Furthermore, significantly lower apoptosis levels and a higher expression of SHH-signaling proteins in COCs were observed, before and after IVM. In conclusion, high-quality oocytes had a greater potential to expand their surrounding cumulus cells with active SHH signaling and a lower apoptosis. This could provide COCs with a proper environment for maturation, thereby leading to a better subsequent embryo development.


2020 ◽  
Author(s):  
CHH Hor ◽  
WY Leong ◽  
ELK Goh

AbstractSonic Hedgehog (Shh) signaling from the primary cilium drives cerebellar granule cell precursor (GCP) proliferation. Mutations of hedgehog (Hh) pathway repressors could cause medulloblastoma, the most prevalent and malignant childhood brain tumor that arises from aberrant GCP proliferation. We demonstrate that brain-specific knockout of a Shh pathway repressor Rab23 in mice caused mis-patterning of cerebellar folia and elevated GCP proliferation during early development, but with no prevalent occurrence of medulloblastoma at adult stage. Strikingly, Rab23-depleted GCPs exhibited up-regulated basal level of Shh pathway activities despite reduced ciliation, and were desensitized against stimulations by Shh and Smoothened (Smo) agonist in primary GCP culture. These results illustrate dual functions of Rab23 in repressing the basal level of Shh signaling, while facilitating Shh signal transduction via Shh/Smo on primary cilium. Collectively, our findings unravel instrumental roles of Rab23 in GCP proliferation and ciliogenesis. Rab23’s potentiation of Shh signaling pathway through the primary cilium and Smo, suggests a potential new therapeutic for Smo/primary cilium-driven medulloblastoma.Author SummaryC.H.H conceived, designed, lead, and performed all in vitro and in vivo experiments, analyzed data and wrote the manuscript. W.Y performed QPCR experiments and primary GCP cultures and analyzed data. E.L.G conceived and directed the study.


Cancers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 525 ◽  
Author(s):  
Alexander Ring ◽  
Cu Nguyen ◽  
Goar Smbatyan ◽  
Debu Tripathy ◽  
Min Yu ◽  
...  

Background: Triple negative breast cancers (TNBCs) are an aggressive BC subtype, characterized by high rates of drug resistance and a high proportion of cancer stem cells (CSC). CSCs are thought to be responsible for tumor initiation and drug resistance. cAMP-response element-binding (CREB) binding protein (CREBBP or CBP) has been implicated in CSC biology and may provide a novel therapeutic target in TNBC. Methods: RNA Seq pre- and post treatment with the CBP-binding small molecule ICG-001 was used to characterize CBP-driven gene expression in TNBC cells. In vitro and in vivo TNBC models were used to determine the therapeutic effect of CBP inhibition via ICG-001. Tissue microarrays (TMAs) were used to investigate the potential of CBP and associated proteins as biomarkers in TNBC. Results: The CBP/ß-catenin/FOXM1 transcriptional complex drives gene expression in TNBC and is associated with increased CSC numbers, drug resistance and poor survival outcome. Targeting of CBP/β-catenin/FOXM1 with ICG-001 eliminated CSCs and sensitized TNBC tumors to chemotherapy. Immunohistochemistry of TMAs demonstrated a significant correlation between FOXM1 expression and TNBC subtype. Conclusion: CBP/β-catenin/FOXM1 transcriptional activity plays an important role in TNBC drug resistance and CSC phenotype. CBP/β-catenin/FOXM1 provides a molecular target for precision therapy in triple negative breast cancer and could form a rationale for potential clinical trials.


2021 ◽  
Author(s):  
Shunya Ohmura ◽  
Aruna Marchetto ◽  
Martin F. Orth ◽  
Jing Li ◽  
Susanne Jabar ◽  
...  

Purpose: Ewing sarcoma (EwS) is a highly aggressive bone- or soft tissue-associated malignancy mostly affecting children, adolescents, and young adults. Although multimodal therapies have strongly improved patients′ overall survival over the past decades, the development of prognostic biomarkers for risk-based patient stratification and more effective therapies with less adverse effects is stagnating. Thus, new personalized medicine approaches are urgently required. Experimental design: Gene expression data of EwS and normal tissues were crossed with survival data to identify highly overexpressed, prognostically relevant, and actionable potential targets. RNA-interference and dose-response assays as well as tissue-microarray analyses were carried out to explore the functional role and druggability of a prominent candidate gene in vitro and in vivo, and to validate its suitability as a prognostic biomarker. Results: Employing a multilayered screening approach, we discover ribonucleotide reductase regulatory subunit M2 (RRM2) as a promising therapeutic target and prognostic biomarker in EwS. Through analysis of two independent EwS patient cohorts, we show that RRM2 mRNA and protein overexpression is associated with an aggressive clinical phenotype and poor patients′ overall survival. In agreement, RRM2 silencing as well as pharmacological inhibition by the specific inhibitor triapine (3-AP) significantly reduces EwS growth in vitro and in vivo. Furthermore, we present evidence that pharmacological RRM2 inhibition by triapine can overcome chemoresistance against doxorubicin or gemcitabine, and synergize with cell cycle checkpoint inhibitors (CHEK1 or WEE1). Conclusions: Based on the aggressive phenotype mediated by and the druggability of RRM2 our results provide a translational rationale for exploiting RRM2 as a novel therapeutic target in EwS and prompt further clinical investigations.


Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1607 ◽  
Author(s):  
Manikowski ◽  
Jakobs ◽  
Jboor ◽  
Grobe

Sonic hedgehog (Shh) signaling plays a tumor-promoting role in many epithelial cancers. Cancer cells produce soluble a Shh that signals to distant stromal cells that express the receptor Patched (Ptc). These receiving cells respond by producing other soluble factors that promote cancer cell growth, generating a positive feedback loop. To interfere with reinforced Shh signaling, we examined the potential of defined heparin and heparan sulfate (HS) polysaccharides to block Shh solubilization and Ptc receptor binding. We confirm in vitro and in vivo that proteolytic cleavage of the N-terminal Cardin–Weintraub (CW) amino acid motif is a prerequisite for Shh solubilization and function. Consistent with the established binding of soluble heparin or HS to the Shh CW target motif, both polysaccharides impaired proteolytic Shh processing and release from source cells. We also show that HS and heparin bind to, and block, another set of basic amino acids required for unimpaired Shh binding to Ptc receptors on receiving cells. Both modes of Shh activity downregulation depend more on HS size and overall charge than on specific HS sulfation modifications. We conclude that heparin oligosaccharide interference in the physiological roles of HS in Shh release and reception may be used to expand the field of investigation to pharmaceutical intervention of tumor-promoting Shh functions.


2019 ◽  
Vol 25 (9) ◽  
pp. 538-549 ◽  
Author(s):  
Qing Guo ◽  
Mei-Fu Xuan ◽  
Zhao-Bo Luo ◽  
Jun-Xia Wang ◽  
Sheng-Zhong Han ◽  
...  

Abstract Baicalin, a traditional Chinese medicinal monomer whose chemical structure is known, can be used to treat female infertility. However, the effect of baicalin on embryonic development is unknown. This study investigated the effects of baicalin on in vitro development of parthenogenetically activated (PA) and in vitro fertilized (IVF) pig embryos and the underlying mechanisms involved. Treatment with 0.1 μg/ml baicalin significantly improved (P < 0.05) the in vitro developmental capacity of PA pig embryos by reducing the reactive oxygen species (ROS) levels and apoptosis and increasing the mitochondrial membrane potential (ΔΨm) and ATP level. mRNA and protein expression of sonic hedgehog (SHH) and GLI1, which are related to the SHH signaling pathway, in PA pig embryos at the 2-cell stage, were significantly higher in the baicalin-treated group than in the control group. To confirm that the SHH signaling pathway is involved in the mechanism by which baicalin improves embryonic development, we treated embryos with baicalin in the absence or presence of cyclopamine (Cy), an inhibitor of this pathway. Cy abolished the effects of baicalin on in vitro embryonic development. In conclusion, baicalin improves the in vitro developmental capacity of PA and IVF pig embryos by inhibiting ROS production and apoptosis, regulating mitochondrial activity and activating SHH signaling.


Sign in / Sign up

Export Citation Format

Share Document