Microfluidic platform for the initiation and investigation of cellular interactions on a single-cell level

Author(s):  
M. Kirschbaum ◽  
M. S. Jäger ◽  
C. Duschl
2020 ◽  
Vol 11 (11) ◽  
Author(s):  
Matthew Ryan Sullivan ◽  
Giovanni Stefano Ugolini ◽  
Saheli Sarkar ◽  
Wenjing Kang ◽  
Evan Carlton Smith ◽  
...  

AbstractThe inhibition of the PD1/PDL1 pathway has led to remarkable clinical success for cancer treatment in some patients. Many, however, exhibit little to no response to this treatment. To increase the efficacy of PD1 inhibition, additional checkpoint inhibitors are being explored as combination therapy options. TSR-042 and TSR-033 are novel antibodies for the inhibition of the PD1 and LAG3 pathways, respectively, and are intended for combination therapy. Here, we explore the effect on cellular interactions of TSR-042 and TSR-033 alone and in combination at the single-cell level. Utilizing our droplet microfluidic platform, we use time-lapse microscopy to observe the effects of these antibodies on calcium flux in CD8+ T cells upon antigen presentation, as well as their effect on the cytotoxic potential of CD8+ T cells on human breast cancer cells. This platform allowed us to investigate the interactions between these treatments and their impacts on T-cell activity in greater detail than previously applied in vitro tests. The novel parameters we were able to observe included effects on the exact time to target cell killing, contact times, and potential for serial-killing by CD8+ T cells. We found that inhibition of LAG3 with TSR-033 resulted in a significant increase in calcium fluctuations of CD8+ T cells in contact with dendritic cells. We also found that the combination of TSR-042 and TSR-033 appears to synergistically increase tumor cell killing and the single-cell level. This study provides a novel single-cell-based assessment of the impact these checkpoint inhibitors have on cellular interactions with CD8+ T cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sandra Thibivilliers ◽  
Marc Libault

Plants are composed of cells that physically interact and constantly adapt to their environment. To reveal the contribution of each plant cells to the biology of the entire organism, their molecular, morphological, and physiological attributes must be quantified and analyzed in the context of the morphology of the plant organs. The emergence of single-cell/nucleus omics technologies now allows plant biologists to access different modalities of individual cells including their epigenome and transcriptome to reveal the unique molecular properties of each cell composing the plant and their dynamic regulation during cell differentiation and in response to their environment. In this manuscript, we provide a perspective regarding the challenges and strategies to collect plant single-cell biological datasets and their analysis in the context of cellular interactions. As an example, we provide an analysis of the transcriptional regulation of the Arabidopsis genes controlling the differentiation of the root hair cells at the single-cell level. We also discuss the perspective of the use of spatial profiling to complement existing plant single-cell omics.


2018 ◽  
Author(s):  
Michael B. Gill ◽  
Simon Koplev ◽  
Anne C. Machel ◽  
Martin L. Miller

ABSTRACTTumours are composed of an array of unique cancer cell clones along with many non-tumour cells such as immune cells, fibroblasts and endothelial cells, which make up the complex tumour microenvironment. To better understand the co-evolution of tumour clones and cells of the tumour microenvironment, we require tools to spatially resolve heterotypic cellular interactions at the single cell level. We present a novel protein-based barcoding technology termed nuclear tandem epitope protein (nTEP) barcoding, which can be designed to combinatorially encode and track dozens to hundreds of tumour clones in their spatial context within complex cellular mixtures using multiplexed antibody-based imaging. Here we provide proof-of-principle of nTEP barcoding and develop the technology, which relies on lentiviral - based stable expression of a nuclear-localised fluorophore that contains unique combinations of protein epitope tags that can be decoded by a limited set of antibodies. By generating a series of cell lines expressing unique nTEP barcodes, we were able to robustly identify and spatially deconvolve specific clones present within highly complex cell mixtures at the single cell level using state-of-the-art iterative indirect immunofluorescence imaging (4i). We define the utility of nTEP-barcoding as a powerful tool for visualising and resolving tumour heterogeneity at the cellular level, and envision its usage in mouse tumour models for understanding how tumour clones modulate and interact with stromal- and immune cells in cancer.


Talanta ◽  
2019 ◽  
Vol 200 ◽  
pp. 169-176 ◽  
Author(s):  
Kun Wang ◽  
Lin Zhou ◽  
Simin Zhao ◽  
Zule Cheng ◽  
Shihui Qiu ◽  
...  

Lab on a Chip ◽  
2015 ◽  
Vol 15 (17) ◽  
pp. 3572-3580 ◽  
Author(s):  
W. Espulgar ◽  
W. Aoki ◽  
T. Ikeuchi ◽  
D. Mita ◽  
M. Saito ◽  
...  

Single-cell level drug profiling application of isolated single and groups of neonatal rat cardiomyocytes trapped by centrifugal force.


Sign in / Sign up

Export Citation Format

Share Document