scholarly journals Enhancing Our Understanding of Plant Cell-to-Cell Interactions Using Single-Cell Omics

2021 ◽  
Vol 12 ◽  
Author(s):  
Sandra Thibivilliers ◽  
Marc Libault

Plants are composed of cells that physically interact and constantly adapt to their environment. To reveal the contribution of each plant cells to the biology of the entire organism, their molecular, morphological, and physiological attributes must be quantified and analyzed in the context of the morphology of the plant organs. The emergence of single-cell/nucleus omics technologies now allows plant biologists to access different modalities of individual cells including their epigenome and transcriptome to reveal the unique molecular properties of each cell composing the plant and their dynamic regulation during cell differentiation and in response to their environment. In this manuscript, we provide a perspective regarding the challenges and strategies to collect plant single-cell biological datasets and their analysis in the context of cellular interactions. As an example, we provide an analysis of the transcriptional regulation of the Arabidopsis genes controlling the differentiation of the root hair cells at the single-cell level. We also discuss the perspective of the use of spatial profiling to complement existing plant single-cell omics.

2020 ◽  
Vol 11 (11) ◽  
Author(s):  
Matthew Ryan Sullivan ◽  
Giovanni Stefano Ugolini ◽  
Saheli Sarkar ◽  
Wenjing Kang ◽  
Evan Carlton Smith ◽  
...  

AbstractThe inhibition of the PD1/PDL1 pathway has led to remarkable clinical success for cancer treatment in some patients. Many, however, exhibit little to no response to this treatment. To increase the efficacy of PD1 inhibition, additional checkpoint inhibitors are being explored as combination therapy options. TSR-042 and TSR-033 are novel antibodies for the inhibition of the PD1 and LAG3 pathways, respectively, and are intended for combination therapy. Here, we explore the effect on cellular interactions of TSR-042 and TSR-033 alone and in combination at the single-cell level. Utilizing our droplet microfluidic platform, we use time-lapse microscopy to observe the effects of these antibodies on calcium flux in CD8+ T cells upon antigen presentation, as well as their effect on the cytotoxic potential of CD8+ T cells on human breast cancer cells. This platform allowed us to investigate the interactions between these treatments and their impacts on T-cell activity in greater detail than previously applied in vitro tests. The novel parameters we were able to observe included effects on the exact time to target cell killing, contact times, and potential for serial-killing by CD8+ T cells. We found that inhibition of LAG3 with TSR-033 resulted in a significant increase in calcium fluctuations of CD8+ T cells in contact with dendritic cells. We also found that the combination of TSR-042 and TSR-033 appears to synergistically increase tumor cell killing and the single-cell level. This study provides a novel single-cell-based assessment of the impact these checkpoint inhibitors have on cellular interactions with CD8+ T cells.


2018 ◽  
Author(s):  
Michael B. Gill ◽  
Simon Koplev ◽  
Anne C. Machel ◽  
Martin L. Miller

ABSTRACTTumours are composed of an array of unique cancer cell clones along with many non-tumour cells such as immune cells, fibroblasts and endothelial cells, which make up the complex tumour microenvironment. To better understand the co-evolution of tumour clones and cells of the tumour microenvironment, we require tools to spatially resolve heterotypic cellular interactions at the single cell level. We present a novel protein-based barcoding technology termed nuclear tandem epitope protein (nTEP) barcoding, which can be designed to combinatorially encode and track dozens to hundreds of tumour clones in their spatial context within complex cellular mixtures using multiplexed antibody-based imaging. Here we provide proof-of-principle of nTEP barcoding and develop the technology, which relies on lentiviral - based stable expression of a nuclear-localised fluorophore that contains unique combinations of protein epitope tags that can be decoded by a limited set of antibodies. By generating a series of cell lines expressing unique nTEP barcodes, we were able to robustly identify and spatially deconvolve specific clones present within highly complex cell mixtures at the single cell level using state-of-the-art iterative indirect immunofluorescence imaging (4i). We define the utility of nTEP-barcoding as a powerful tool for visualising and resolving tumour heterogeneity at the cellular level, and envision its usage in mouse tumour models for understanding how tumour clones modulate and interact with stromal- and immune cells in cancer.


Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1199 ◽  
Author(s):  
Mayr-Buro ◽  
Schlereth ◽  
Beuerlein ◽  
Tenekeci ◽  
Meier-Soelch ◽  
...  

The frequently occurring heterogeneity of cancer cells and their functional interaction with immune cells in the tumor microenvironment raises the need to study signaling pathways at the single cell level with high precision, sensitivity, and spatial resolution. As aberrant NF-κB activity has been implicated in almost all steps of cancer development, we analyzed the dynamic regulation and activation status of the canonical NF-κB pathway in control and IL-1α-stimulated individual cells using proximity ligation assays (PLAs). These systematic experiments allowed the visualization of the dynamic dissociation and re-formation of endogenous p65/IκBα complexes and the nuclear translocation of NF-κB p50/p65 dimers. PLA combined with immunostaining for p65 or with NFKBIA single molecule mRNA-FISH facilitated the analysis of (i) further levels of the NF-κB pathway, (i) its functionality for downstream gene expression, and (iii) the heterogeneity of the NF-κB response in individual cells. PLA also revealed the interaction between NF-κB p65 and the P-body component DCP1a, a new p65 interactor that contributes to efficient p65 NF-κB nuclear translocation. In summary, these data show that PLA technology faithfully mirrored all aspects of dynamic NF-κB regulation, thus allowing molecular diagnostics of this key pathway at the single cell level which will be required for future precision medicine.


2019 ◽  
Author(s):  
Ruixin Wang ◽  
Dongni Wang ◽  
Dekai Kang ◽  
Xusen Guo ◽  
Chong Guo ◽  
...  

BACKGROUND In vitro human cell line models have been widely used for biomedical research to predict clinical response, identify novel mechanisms and drug response. However, one-fifth to one-third of cell lines have been cross-contaminated, which can seriously result in invalidated experimental results, unusable therapeutic products and waste of research funding. Cell line misidentification and cross-contamination may occur at any time, but authenticating cell lines is infrequent performed because the recommended genetic approaches are usually require extensive expertise and may take a few days. Conversely, the observation of live-cell morphology is a direct and real-time technique. OBJECTIVE The purpose of this study was to construct a novel computer vision technology based on deep convolutional neural networks (CNN) for “cell face” recognition. This was aimed to improve cell identification efficiency and reduce the occurrence of cell-line cross contamination. METHODS Unstained optical microscopy images of cell lines were obtained for model training (about 334 thousand patch images), and testing (about 153 thousand patch images). The AI system first trained to recognize the pure cell morphology. In order to find the most appropriate CNN model,we explored the key image features in cell morphology classification tasks using the classical CNN model-Alexnet. After that, a preferred fine-grained recognition model BCNN was used for the cell type identification (seven classifications). Next, we simulated the situation of cell cross-contamination and mixed the cells in pairs at different ratios. The detection of the cross-contamination was divided into two levels, whether the cells are mixed and what the contaminating cell is. The specificity, sensitivity, and accuracy of the model were tested separately by external validation. Finally, the segmentation model DialedNet was used to present the classification results at the single cell level. RESULTS The cell texture and density were the influencing factors that can be better recognized by the bilinear convolutional neural network (BCNN) comparing to AlexNet. The BCNN achieved 99.5% accuracy in identifying seven pure cell lines and 86.3% accuracy for detecting cross-contamination (mixing two of the seven cell lines). DilatedNet was applied to the semantic segment for analyzing in single-cell level and achieved an accuracy of 98.2%. CONCLUSIONS This study successfully demonstrated that cell lines can be morphologically identified using deep learning models. Only light-microscopy images and no reagents are required, enabling most labs to routinely perform cell identification tests.


Sign in / Sign up

Export Citation Format

Share Document