WiFi Assisted GPS for Extended Location Services

Author(s):  
Saverio Cacopardi ◽  
Mauro Femminella ◽  
Gianluca Reali ◽  
Andrea Sedini ◽  
Fortunato Palella ◽  
...  
2016 ◽  
Vol 2 (2) ◽  
Author(s):  
Amit Singh ◽  
Nitin Mishra ◽  
Angad Singh

 A Wireless Mobile Ad-hoc Network consists of variety of mobile nodes that temporally kind a dynamic infrastructure less network. To modify communication between nodes that don’t have direct radio contact, every node should operate as a wireless router and potential forward knowledge traffic of behalf of the opposite node. In MANET Localization is a fundamental problem. Current localization algorithm mainly focuses on checking the localizability of a network and/or how to localize as many nodes as possible. It could provide accurate position information foe kind of expanding application. Localization provide information about coverage, deployment, routing, location, services, target tracking and rescue If high mobility among the mobile nodes occurs path failure breaks. Hence the location information cannot be predicted. Here we have proposed a localization based algorithm which will help to provide information about the localized and non-localized nodes in a network. In the proposed approach DREAM protocol and AODV protocol are used to find the localizability of a node in a network. DREAM protocol is a location protocol which helps to find the location of a node in a network whereas AODV is a routing protocol it discover route as and when necessary it does not maintain route from every node to every other. To locate the mobile nodes in a n/w an node identification algorithm is used. With the help of this algorithm localized and non-localized node can be easily detected in respect of radio range. This method helps to improve the performance of a module and minimize the location error and achieves improved performance in the form of UDP packet loss, received packet and transmitted packets, throughput, routing overhead, packet delivery fraction. All the simulation done through the NS-2 module and tested the mobile ad-hoc network.


2021 ◽  
Vol 13 (4) ◽  
pp. 703
Author(s):  
Lvyang Ye ◽  
Yikang Yang ◽  
Xiaolun Jing ◽  
Jiangang Ma ◽  
Lingyu Deng ◽  
...  

With the rapid development of satellite technology and the need to satisfy the increasing demand for location-based services, in challenging environments such as indoors, forests, and canyons, there is an urgent need to improve the position accuracy in these environments. However, traditional algorithms obtain the position solution through time redundancy in exchange for spatial redundancy, and they require continuous observations that cannot satisfy the real-time location services. In addition, they must also consider the clock bias between the satellite and receiver. Therefore, in this paper, we provide a single-satellite integrated navigation algorithm based on the elimination of clock bias for broadband low earth orbit (LEO) satellite communication links. First, we derive the principle of LEO satellite communication link clock bias elimination; then, we give the principle and process of the algorithm. Next, we model and analyze the error of the system. Subsequently, based on the unscented Kalman filter (UKF), we model the state vector and observation vector of our algorithm and give the state and observation equations. Finally, for different scenarios, we conduct qualitative and quantitative analysis through simulations, and the results show that, whether in an altimeter scenario or non-altimeter scenario, the performance indicators of our algorithm are significantly better than the inertial navigation system (INS), which can effectively overcome the divergence problem of INS; compared with the medium earth orbit (MEO) constellation, the navigation trajectory under the LEO constellation is closer to the real trajectory of the aircraft; and compared with the traditional algorithm, the accuracy of each item is improved by more than 95%. These results show that our algorithm not only significantly improves the position error, but also effectively suppresses the divergence of INS. The algorithm is more robust and can satisfy the requirements of cm-level real-time location services in challenging environments.


2021 ◽  
Vol 17 (2) ◽  
pp. 1-22
Author(s):  
Jingao Xu ◽  
Erqun Dong ◽  
Qiang Ma ◽  
Chenshu Wu ◽  
Zheng Yang

Existing indoor navigation solutions usually require pre-deployed comprehensive location services with precise indoor maps and, more importantly, all rely on dedicatedly installed or existing infrastructure. In this article, we present Pair-Navi, an infrastructure-free indoor navigation system that circumvents all these requirements by reusing a previous traveler’s (i.e., leader) trace experience to navigate future users (i.e., followers) in a Peer-to-Peer mode. Our system leverages the advances of visual simultaneous localization and mapping ( SLAM ) on commercial smartphones. Visual SLAM systems, however, are vulnerable to environmental dynamics in the precision and robustness and involve intensive computation that prohibits real-time applications. To combat environmental changes, we propose to cull non-rigid contexts and keep only the static and rigid contents in use. To enable real-time navigation on mobiles, we decouple and reorganize the highly coupled SLAM modules for leaders and followers. We implement Pair-Navi on commodity smartphones and validate its performance in three diverse buildings and two standard datasets (TUM and KITTI). Our results show that Pair-Navi achieves an immediate navigation success rate of 98.6%, which maintains as 83.4% even after 2 weeks since the leaders’ traces were collected, outperforming the state-of-the-art solutions by >50%. Being truly infrastructure-free, Pair-Navi sheds lights on practical indoor navigations for mobile users.


Author(s):  
Md. Asadul Islam ◽  
Fatna Belqasmi ◽  
Roch Glitho ◽  
Ferhat Khendek

2021 ◽  
Author(s):  
Ryan Daher ◽  
Nesma Aldash

Abstract With the global push towards Industry 4.0, a number of leading companies and organizations have invested heavily in Industrial Internet of Things (IIOT's) and acquired a massive amount of data. But data without proper analysis that converts it into actionable insights is just more information. With the advancement of Data analytics, machine learning, artificial intelligence, numerous methods can be used to better extract value out of the amassed data from various IIOTs and leverage the analysis to better make decisions impacting efficiency, productivity, optimization and safety. This paper focuses on two case studies- one from upstream and one from downstream using RTLS (Real Time Location Services). Two types of challenges were present: the first one being the identification of the location of all personnel on site in case of emergency and ensuring that all have mustered in a timely fashion hence reducing the time to muster and lessening the risks of Leaving someone behind. The second challenge being the identification of personnel and various contractors, the time they entered in productive or nonproductive areas and time it took to complete various tasks within their crafts while on the job hence accounting for efficiency, productivity and cost reduction. In both case studies, advanced analytics were used, and data collection issues were encountered highlighting the need for further and seamless integration between data, analytics and intelligence is needed. Achievements from both cases were visible increase in productivity and efficiency along with the heightened safety awareness hence lowering the overall risk and liability of the operation. Novel/Additive Information: The results presented from both studies have highlighted other potential applications of the IIOT and its related analytics. Pertinent to COVID-19, new application of such approach was tested in contact tracing identifying workers who could have tested positive and tracing back to personnel that have been in close proximity and contact therefore reducing the spread of COVID. Other application of the IIOT and its related analytics has also been tested in crane, forklift and heavy machinery proximity alert reducing the risk of accidents.


Author(s):  
Wilkins Fernandez ◽  
Stephan Alber
Keyword(s):  

2018 ◽  
Vol 09 (04) ◽  
pp. 841-848
Author(s):  
Kevin King ◽  
John Quarles ◽  
Vaishnavi Ravi ◽  
Tanvir Chowdhury ◽  
Donia Friday ◽  
...  

Background Through the Health Information Technology for Economic and Clinical Health Act of 2009, the federal government invested $26 billion in electronic health records (EHRs) to improve physician performance and patient safety; however, these systems have not met expectations. One of the cited issues with EHRs is the human–computer interaction, as exhibited by the excessive number of interactions with the interface, which reduces clinician efficiency. In contrast, real-time location systems (RTLS)—technologies that can track the location of people and objects—have been shown to increase clinician efficiency. RTLS can improve patient flow in part through the optimization of patient verification activities. However, the data collected by RTLS have not been effectively applied to optimize interaction with EHR systems. Objectives We conducted a pilot study with the intention of improving the human–computer interaction of EHR systems by incorporating a RTLS. The aim of this study is to determine the impact of RTLS on process metrics (i.e., provider time, number of rooms searched to find a patient, and the number of interactions with the computer interface), and the outcome metric of patient identification accuracy Methods A pilot study was conducted in a simulated emergency department using a locally developed camera-based RTLS-equipped EHR that detected the proximity of subjects to simulated patients and displayed patient information when subjects entered the exam rooms. Ten volunteers participated in 10 patient encounters with the RTLS activated (RTLS-A) and then deactivated (RTLS-D). Each volunteer was monitored and actions recorded by trained observers. We sought a 50% improvement in time to locate patients, number of rooms searched to locate patients, and the number of mouse clicks necessary to perform those tasks. Results The time required to locate patients (RTLS-A = 11.9 ± 2.0 seconds vs. RTLS-D = 36.0 ± 5.7 seconds, p < 0.001), rooms searched to find patient (RTLS-A = 1.0 ± 1.06 vs. RTLS-D = 3.8 ± 0.5, p < 0.001), and number of clicks to access patient data (RTLS-A = 1.0 ± 0.06 vs. RTLS-D = 4.1 ± 0.13, p < 0.001) were significantly reduced with RTLS-A relative to RTLS-D. There was no significant difference between RTLS-A and RTLS-D for patient identification accuracy. Conclusion This pilot demonstrated in simulation that an EHR equipped with real-time location services improved performance in locating patients and reduced error compared with an EHR without RTLS. Furthermore, RTLS decreased the number of mouse clicks required to access information. This study suggests EHRs equipped with real-time location services that automates patient location and other repetitive tasks may improve physician efficiency, and ultimately, patient safety.


Author(s):  
Mersini Paschou ◽  
Evangelos Sakkopoulos ◽  
Athanasios Tsakalidis ◽  
Giannis Tzimas ◽  
Emmanouil Viennas

Sign in / Sign up

Export Citation Format

Share Document