Several Equivalent Conditions of Fuzzy Subgroups of Some Groups

Author(s):  
Zhaohao Wang ◽  
Lan Shu
2021 ◽  
Vol 76 (2) ◽  
Author(s):  
Leonardo Alese

AbstractGiven a pair of real functions (k, f), we study the conditions they must satisfy for $$k+\lambda f$$ k + λ f to be the curvature in the arc-length of a closed planar curve for all real $$\lambda $$ λ . Several equivalent conditions are pointed out, certain periodic behaviours are shown as essential and a family of such pairs is explicitely constructed. The discrete counterpart of the problem is also studied.


2021 ◽  
Vol 19 (1) ◽  
pp. 77-86
Author(s):  
Xiangjun Kong ◽  
Pei Wang ◽  
Jian Tang

Abstract In any U-abundant semigroup with an Ehresmann transversal, two significant components R and L are introduced in this paper and described by Green’s ∼ \sim -relations. Some interesting properties associated with R and L are explored and some equivalent conditions for the Ehresmann transversal to be a quasi-ideal are acquired. Finally, a spined product structure theorem is established for a U-abundant semigroup with a quasi-ideal Ehresmann transversal by means of R and L.


2021 ◽  
Vol 19 (1) ◽  
pp. 515-530
Author(s):  
Xiao Yu ◽  
Pu Zhang ◽  
Hongliang Li

Abstract In this paper, we study the equivalent conditions for the boundedness of the commutators generated by the multilinear maximal function and the bounded mean oscillation (BMO) function on Morrey space. Moreover, the endpoint estimate for such operators on generalized Morrey spaces is also given.


2020 ◽  
Vol 18 (1) ◽  
pp. 1540-1551
Author(s):  
Jung Wook Lim ◽  
Dong Yeol Oh

Abstract Let ({\mathrm{\Gamma}},\le ) be a strictly ordered monoid, and let {{\mathrm{\Gamma}}}^{\ast }\left={\mathrm{\Gamma}}\backslash \{0\} . Let D\subseteq E be an extension of commutative rings with identity, and let I be a nonzero proper ideal of D. Set \begin{array}{l}D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] := \left\{f\in [\kern-2pt[ {E}^{{\mathrm{\Gamma}},\le }]\kern-2pt] \hspace{0.15em}|\hspace{0.2em}f(0)\in D\right\}\hspace{.5em}\text{and}\\ \hspace{0.2em}D+[\kern-2pt[ {I}^{{\Gamma }^{\ast },\le }]\kern-2pt] := \left\{f\in [\kern-2pt[ {D}^{{\mathrm{\Gamma}},\le }]\kern-2pt] \hspace{0.15em}|\hspace{0.2em}f(\alpha )\in I,\hspace{.5em}\text{for}\hspace{.25em}\text{all}\hspace{.5em}\alpha \in {{\mathrm{\Gamma}}}^{\ast }\right\}.\end{array} In this paper, we give necessary conditions for the rings D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively ordered, and sufficient conditions for the rings D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively totally ordered. Moreover, we give a necessary and sufficient condition for the ring D+[\kern-2pt[ {I}^{{\Gamma }^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively totally ordered. As corollaries, we give equivalent conditions for the rings D+({X}_{1},\ldots ,{X}_{n})E{[}{X}_{1},\ldots ,{X}_{n}] and D+({X}_{1},\ldots ,{X}_{n})I{[}{X}_{1},\ldots ,{X}_{n}] to be Noetherian.


2015 ◽  
Vol 93 (3) ◽  
pp. 473-485 ◽  
Author(s):  
JIAN-ZE LI

In this article, we study the Mazur–Ulam property of the sum of two strictly convex Banach spaces. We give an equivalent form of the isometric extension problem and two equivalent conditions to decide whether all strictly convex Banach spaces admit the Mazur–Ulam property. We also find necessary and sufficient conditions under which the $\ell ^{1}$-sum and the $\ell ^{\infty }$-sum of two strictly convex Banach spaces admit the Mazur–Ulam property.


2014 ◽  
Vol 644-650 ◽  
pp. 6067-6070
Author(s):  
Hong Wei Liu ◽  
Cai Bo Xiao

In this paper, we propose a framework of the optimal risk allocation, under the pareto optimal we give equivalent conditions and provided its representation theorem under Pareto-optimal allocation, Which is an extension of the ones introduced by Ludger Rüschendorf (2006).


2021 ◽  
pp. 1-13
Author(s):  
Aneeza Imtiaz ◽  
Umer Shuaib ◽  
Abdul Razaq ◽  
Muhammad Gulistan

The study of complex fuzzy sets defined over the meet operator (ξ –CFS) is a useful mathematical tool in which range of degrees is extended from [0, 1] to complex plane with unit disk. These particular complex fuzzy sets plays a significant role in solving various decision making problems as these particular sets are powerful extensions of classical fuzzy sets. In this paper, we define ξ –CFS and propose the notion of complex fuzzy subgroups defined over ξ –CFS (ξ –CFSG) along with their various fundamental algebraic characteristics. We extend the study of this idea by defining the concepts of ξ –complex fuzzy homomorphism and ξ –complex fuzzy isomorphism between any two ξ –complex fuzzy subgroups and establish fundamental theorems of ξ –complex fuzzy morphisms. In addition, we effectively apply the idea of ξ –complex fuzzy homomorphism to refine the corrupted homomorphic image by eliminating its distortions in order to obtain its original form. Moreover, to view the true advantage of ξ –complex fuzzy homomorphism, we present a comparative analysis with the existing knowledge of complex fuzzy homomorphism which enables us to choose this particular approach to solve many decision-making problems.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 74547-74556 ◽  
Author(s):  
Laila Latif ◽  
Umer Shuaib ◽  
Hanan Alolaiyan ◽  
Abdul Razaq

1999 ◽  
Vol 105 (1) ◽  
pp. 181-183 ◽  
Author(s):  
Asok Kumer Ray
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document