scholarly journals High Order Filter Methods for Wide Range of Compressible Flow Speeds

Author(s):  
H. C. Yee ◽  
Björn Sjögreen
2015 ◽  
Vol 10 (10) ◽  
pp. 580-582 ◽  
Author(s):  
Somayeh Nodehi ◽  
Waleed Soliman Mohammed ◽  
Harith Ahmad ◽  
Sulaiman Wadi Harun

Author(s):  
Stanley B. Mellsen

Abstract The effect of particles, such as dust in air on aerodynamic drag of circular cylinders was calculated for compressible flow at critical Mach number and for incompressible flow. The effect of compressibility was found negligible for particles larger than about 10 μm, for which the air can be considered a continuum. Drag coefficient and collection efficiency are provided for a wide range of inertia parameters and Reynolds numbers for both compressible and incompressible flow.


2018 ◽  
Vol 848 ◽  
pp. 42-77 ◽  
Author(s):  
L. F. Chen ◽  
J. Zang ◽  
P. H. Taylor ◽  
L. Sun ◽  
G. C. J. Morgan ◽  
...  

Wave loading on marine structures is the major external force to be considered in the design of such structures. The accurate prediction of the nonlinear high-order components of the wave loading has been an unresolved challenging problem. In this paper, the nonlinear harmonic components of hydrodynamic forces on a bottom-mounted vertical cylinder are investigated experimentally. A large number of experiments were conducted in the Danish Hydraulic Institute shallow water wave basin on the cylinder, both on a flat bed and a sloping bed, as part of a European collaborative research project. High-quality data sets for focused wave groups have been collected for a wide range of wave conditions. The high-order harmonic force components are separated by applying the ‘phase-inversion’ method to the measured force time histories for a crest focused wave group and the same wave group inverted. This separation method is found to work well even for locally violent nearly-breaking waves formed from bidirectional wave pairs. It is also found that the $n$th-harmonic force scales with the $n$th power of the envelope of both the linear undisturbed free-surface elevation and the linear force component in both time variation and amplitude. This allows estimation of the higher-order harmonic shapes and time histories from knowledge of the linear component alone. The experiments also show that the harmonic structure of the wave loading on the cylinder is virtually unaltered by the introduction of a sloping bed, depending only on the local wave properties at the cylinder. Furthermore, our new experimental results reveal that for certain wave cases the linear loading is actually less than 40 % of the total wave loading and the high-order harmonics contribute more than 60 % of the loading. The significance of this striking new result is that it reveals the importance of high-order nonlinear wave loading on offshore structures and means that such loading should be considered in their design.


Author(s):  
Awder Mohammed Ahmed ◽  
◽  
Adnan Mohsin Abdulazeez ◽  

Multi-label classification addresses the issues that more than one class label assigns to each instance. Many real-world multi-label classification tasks are high-dimensional due to digital technologies, leading to reduced performance of traditional multi-label classifiers. Feature selection is a common and successful approach to tackling this problem by retaining relevant features and eliminating redundant ones to reduce dimensionality. There is several feature selection that is successfully applied in multi-label learning. Most of those features are wrapper methods that employ a multi-label classifier in their processes. They run a classifier in each step, which requires a high computational cost, and thus they suffer from scalability issues. Filter methods are introduced to evaluate the feature subsets using information-theoretic mechanisms instead of running classifiers to deal with this issue. Most of the existing researches and review papers dealing with feature selection in single-label data. While, recently multi-label classification has a wide range of real-world applications such as image classification, emotion analysis, text mining, and bioinformatics. Moreover, researchers have recently focused on applying swarm intelligence methods in selecting prominent features of multi-label data. To the best of our knowledge, there is no review paper that reviews swarm intelligence-based methods for multi-label feature selection. Thus, in this paper, we provide a comprehensive review of different swarm intelligence and evolutionary computing methods of feature selection presented for multi-label classification tasks. To this end, in this review, we have investigated most of the well-known and state-of-the-art methods and categorize them based on different perspectives. We then provided the main characteristics of the existing multi-label feature selection techniques and compared them analytically. We also introduce benchmarks, evaluation measures, and standard datasets to facilitate research in this field. Moreover, we performed some experiments to compare existing works, and at the end of this survey, some challenges, issues, and open problems of this field are introduced to be considered by researchers in the future.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sergio Jiménez-Gambín ◽  
Noé Jiménez ◽  
José M. Benlloch ◽  
Francisco Camarena

AbstractWe report zero-th and high-order acoustic Bessel beams with broad depth-of-field generated using acoustic holograms. While the transverse field distribution of Bessel beams generated using traditional passive methods is correctly described by a Bessel function, these methods present a common drawback: the axial distribution of the field is not constant, as required for ideal Bessel beams. In this work, we experimentally, numerically and theoretically report acoustic truncated Bessel beams of flat-intensity along their axis in the ultrasound regime using phase-only holograms. In particular, the beams present a uniform field distribution showing an elongated focal length of about 40 wavelengths, while the transverse width of the beam remains smaller than 0.7 wavelengths. The proposed acoustic holograms were compared with 3D-printed fraxicons, a blazed version of axicons. The performance of both phase-only holograms and fraxicons is studied and we found that both lenses produce Bessel beams in a wide range of frequencies. In addition, high-order Bessel beam were generated. We report first order Bessel beams that show a clear phase dislocation along their axis and a vortex with single topological charge. The proposed method may have potential applications in ultrasonic imaging, biomedical ultrasound and particle manipulation applications using passive lenses.


2010 ◽  
Vol 138 (4) ◽  
pp. 1344-1367 ◽  
Author(s):  
In-Hyuk Kwon ◽  
Hyeong-Bin Cheong

Abstract A tropical cyclone initialization method with an idealized three-dimensional bogus vortex of an analytic empirical formula is presented for the track and intensity prediction. The procedure in the new method consists of four steps: the separation of the disturbance from the analysis, determination of the tropical cyclone domain, generation of symmetric bogus vortex, and merging of it with the analysis data. When separating the disturbance field, an efficient spherical high-order filter with the double-Fourier series is used whose cutoff scale can be adjusted with ease to the horizontal scale of the tropical cyclone of interest. The tropical cyclone domain is determined from the streamfunction field instead of the velocities. The axisymmetric vortex to replace the poorly resolved tropical cyclone in the analysis is designed in terms of analytic empirical functions with a careful treatment of the upper-layer flows as well as the secondary circulations. The geopotential of the vortex is given in such a way that the negative anomaly in the lower layer is changed into positive anomaly above the prescribed pressure level, which depends on the intensity of the tropical cyclone. The geopotential is then used to calculate the tangential wind and temperature using the gradient wind balance and the hydrostatic balance, respectively. The inflow and outflow in the tropical cyclone are constructed to resemble closely the observed or simulated structures under the constraint of mass balance. The bogus vortex is merged with the disturbance field with the use of matching principle so that it is not affected except near the boundary of tropical cyclone domain. The humidity of the analysis is modified to be very close to the saturation in the lower layers near the tropical cyclone center. The balanced bogus vortex of the present study is completely specified on the basis of four parameters from the Regional Specialized Meteorological Center (RSMC) report and the additional two parameters, which are derived from the analysis data. The initialization method was applied to the track and the intensity (in terms of central pressure) prediction of the TCs observed in the western North Pacific Ocean and East China Sea in 2007 with the use of the Weather Research and Forecasting (WRF) model. No significant initial jump or abrupt change was seen in either momentum or surface pressure during the time integration, thus indicating a proper tropical cyclone initialization. Relative to the results without the tropical cyclone initialization and the forecast results of RSMC Tokyo, the present method presented a great improvement in both the track and intensity prediction.


Sign in / Sign up

Export Citation Format

Share Document