Neuropeptide Y and Its Receptor Subtypes in the Central Nervous System: Emphasis on Their Role in Animal Models of Psychiatric Disorders

Author(s):  
J. P. Redrobe ◽  
C. Carvajal ◽  
A. Kask ◽  
Y. Dumont ◽  
R. Quirion
2019 ◽  
Vol 20 (7) ◽  
pp. 750-758 ◽  
Author(s):  
Yi Wu ◽  
Hengxun He ◽  
Zhibin Cheng ◽  
Yueyu Bai ◽  
Xi Ma

Obesity is one of the main challenges of public health in the 21st century. Obesity can induce a series of chronic metabolic diseases, such as diabetes, dyslipidemia, hypertension and nonalcoholic fatty liver, which seriously affect human health. Gut-brain axis, the two-direction pathway formed between enteric nervous system and central nervous system, plays a vital role in the occurrence and development of obesity. Gastrointestinal signals are projected through the gut-brain axis to nervous system, and respond to various gastrointestinal stimulation. The central nervous system regulates visceral activity through the gut-brain axis. Brain-gut peptides have important regulatory roles in the gut-brain axis. The brain-gut peptides of the gastrointestinal system and the nervous system regulate the gastrointestinal movement, feeling, secretion, absorption and other complex functions through endocrine, neurosecretion and paracrine to secrete peptides. Both neuropeptide Y and peptide YY belong to the pancreatic polypeptide family and are important brain-gut peptides. Neuropeptide Y and peptide YY have functions that are closely related to appetite regulation and obesity formation. This review describes the role of the gutbrain axis in regulating appetite and maintaining energy balance, and the functions of brain-gut peptides neuropeptide Y and peptide YY in obesity. The relationship between NPY and PYY and the interaction between the NPY-PYY signaling with the gut microbiota are also described in this review.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jaromir Myslivecek

Social species form organizations that support individuals because the consequent social behaviors help these organisms survive. The isolation of these individuals may be a stressor. We reviewed the potential mechanisms of the effects of social isolation on cholinergic signaling and vice versa how changes in cholinergic signaling affect changes due to social isolation.There are two important problems regarding this topic. First, isolation schemes differ in their duration (1–165 days) and initiation (immediately after birth to adulthood). Second, there is an important problem that is generally not considered when studying the role of the cholinergic system in neurobehavioral correlates: muscarinic and nicotinic receptor subtypes do not differ sufficiently in their affinity for orthosteric site agonists and antagonists. Some potential cholinesterase inhibitors also affect other targets, such as receptors or other neurotransmitter systems. Therefore, the role of the cholinergic system in social isolation should be carefully considered, and multiple receptor systems may be involved in the central nervous system response, although some subtypes are involved in specific functions. To determine the role of a specific receptor subtype, the presence of a specific subtype in the central nervous system should be determined using search in knockout studies with the careful application of specific agonists/antagonists.


Author(s):  
Ariel Y. Deutch ◽  
Robert H. Roth

Chapter 2 describes the neurochemical organization of the brain. It summarizes the diverse types of molecules that neurons in the brain use as neurotransmitters and neurotrophic factors, and how these molecules are synthesized and metabolized. The chapter also presents the array of receptor proteins through which these molecules regulate target neuron functioning and the reuptake proteins that generally terminate the neurotransmitter signal. Today a large majority of all drugs used to treat psychiatric disorders, as well as most drugs of abuse, still have as their initial targets proteins involved directly in neurotransmitter function.


1993 ◽  
Vol 8 (3) ◽  
pp. 115-124 ◽  
Author(s):  
P Castrogiovanni ◽  
F Pieraccini ◽  
I Maremmani ◽  
D Marazziti

SummaryAlthough a great deal of biological research has been carried out on several psychiatric disorders, it is disappointing to see how little progress has been made in the field of the biology of personality. The authors underline the methodological problems that arise in the investigation of biological substrates of human personality and review both currently available and putative peripheral markers of the central nervous system that might be used in further human studies.


Sign in / Sign up

Export Citation Format

Share Document