gut peptides
Recently Published Documents


TOTAL DOCUMENTS

277
(FIVE YEARS 38)

H-INDEX

35
(FIVE YEARS 5)

Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 874
Author(s):  
Quancheng Liu ◽  
Fuchang Li ◽  
Libo Huang ◽  
Wenjie Chen ◽  
Zhongyuan Li ◽  
...  

Fumonisin B1 (FB1) is the most common food-borne mycotoxin produced by the Fusarium species, posing a potential threat to human and animal health. Pigs are more sensitive to FB1 ingested from feed compared to other farmed livestock. Enzymatic degradation is an ideal detoxification method that has attracted much attention. This study aimed to explore the functional characteristics of the carboxylesterase FumDSB in growing pigs from the perspective of brain–gut regulation. A total of 24 growing pigs were divided into three groups. The control group was fed a basal diet, the FB1 group was supplemented with FB1 at 5 mg/kg feed, and the FumDSB group received added FumDSB based on the diet of the FB1 group. After 35 days of animal trials, samples from the hypothalamus and jejunum were analyzed through HE staining, qRT-PCR and immunohistochemistry. The results demonstrated that the ingestion of FB1 can reduce the feed intake and weight gain of growing pigs, indicating that several appetite-related brain-gut peptides (including NPY, PYY, ghrelin and obestatin, etc.) play important roles in the anorexia response induced by FB1. After adding FumDSB as detoxifying enzymes, however, the anorexia effects of FB1 were alleviated, and the expression and distribution of the corresponding brain-gut peptides exhibited a certain degree of regulation. In conclusion, the addition of FumDSB can reduce the anorexia effects of FB1 by regulating several brain-gut peptides in both the hypothalamus and the jejunum of growing pigs.


2021 ◽  
pp. 1-8
Author(s):  
Pamela K. Keel ◽  
Lisa A. Eckel ◽  
Britny A. Hildebrandt ◽  
Alissa A. Haedt-Matt ◽  
Daryl J. Murry ◽  
...  

Abstract Background Prior work supports delayed gastric emptying in anorexia nervosa and bulimia nervosa (BN) but not binge-eating disorder, suggesting that neither low body weight nor binge eating fully accounts for slowed gastric motility. Specifying a link between delayed gastric emptying and self-induced vomiting could offer new insights into the pathophysiology of purging disorder (PD). Methods Women (N = 95) recruited from the community meeting criteria for DSM-5 BN who purged (n = 26), BN with nonpurging compensatory behaviors (n = 18), PD (n = 25), or healthy control women (n = 26) completed assessments of gastric emptying, gut peptides, and subjective responses over the course of a standardized test meal under two conditions administered in a double-blind, crossover sequence: placebo and 10 mg of metoclopramide. Results Delayed gastric emptying was associated with purging with no main or moderating effects of binge eating in the placebo condition. Medication eliminated group differences in gastric emptying but did not alter group differences in reported gastrointestinal distress. Exploratory analyses revealed that medication caused increased postprandial PYY release, which predicted elevated gastrointestinal distress. Conclusions Delayed gastric emptying demonstrates a specific association with purging behaviors. However, correcting disruptions in gastric emptying may exacerbate disruptions in gut peptide responses specifically linked to the presence of purging after normal amounts of food.


Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 892
Author(s):  
Ravi Philip Rajkumar

Recent research has identified the gut–brain axis as a key mechanistic pathway and potential therapeutic target in depression. In this paper, the potential role of gut hormones as potential treatments or predictors of response in depression is examined, with specific reference to the peptide hormone motilin. This possibility is explored through two methods: (1) a conceptual review of the possible links between motilin and depression, including evidence from animal and human research as well as clinical trials, based on a literature search of three scientific databases, and (2) an analysis of the relationship between a functional polymorphism (rs2281820) of the motilin (MLN) gene and cross-national variations in the prevalence of depression based on allele frequency data after correction for potential confounders. It was observed that (1) there are several plausible mechanisms, including interactions with diet, monoamine, and neuroendocrine pathways, to suggest that motilin may be relevant to the pathophysiology and treatment of depression, and (2) there was a significant correlation between rs2281820 allele frequencies and the prevalence of depression after correcting for multiple confounding factors. These results suggest that further evaluation of the utility of motilin and related gut peptides as markers of antidepressant response is required and that these molecular pathways represent potential future mechanisms for antidepressant drug development.


Author(s):  
Ravi Philip Rajkumar

Recent research has identified the gut-brain axis as a key mechanistic pathway and potential therapeutic target in depression. In this paper, the potential role of gut hormones as potential treatments or predictors of response in depression is examined, with specific reference to the peptide hormone motilin. This possibility is explored through two methods: (a) a conceptual review of the possible links between motilin and depression, including evidence from animal and human research as well as clinical trials, and (b) an analysis of the relationship between a functional polymorphism (rs2281820) of the motilin (MLN) gene and cross-national variations in the prevalence of depression. It was observed that (a) there are several plausible mechanisms, including interactions with diet, monoamine, and neuroendocrine pathways, to suggest that motilin may be relevant to the pathophysiology and treatment of depression, and (b) there was a significant correlation between rs2281820 allele frequencies and the prevalence of depression after correcting for multiple confounding factors. These results suggest that further evaluation of the utility of motilin and related gut peptides as markers of antidepressant response is required, and that these molecular pathways represent potential future mechanisms for antidepressant drug development.


Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2826
Author(s):  
Malcolm J. Borg ◽  
Cong Xie ◽  
Christopher K. Rayner ◽  
Michael Horowitz ◽  
Karen L. Jones ◽  
...  

Postprandial hypotension (PPH) is an important and under-recognised disorder resulting from inadequate compensatory cardiovascular responses to meal-induced splanchnic blood pooling. Current approaches to management are suboptimal. Recent studies have established that the cardiovascular response to a meal is modulated profoundly by gastrointestinal factors, including the type and caloric content of ingested meals, rate of gastric emptying, and small intestinal transit and absorption of nutrients. The small intestine represents the major site of nutrient-gut interactions and associated neurohormonal responses, including secretion of glucagon-like peptide-1, glucose-dependent insulinotropic peptide and somatostatin, which exert pleotropic actions relevant to the postprandial haemodynamic profile. This review summarises knowledge relating to the role of these gut peptides in the cardiovascular response to a meal and their potential application to the management of PPH.


2021 ◽  
Author(s):  
Elina Akalestou ◽  
Alexander D Miras ◽  
Guy A Rutter ◽  
Carel W le Roux

Abstract Obesity surgery remains the most effective treatment for obesity and its complications. Weight loss was initially attributed to decreased energy absorption from the gut but have since been linked to reduced appetitive behaviour and potentially increased energy expenditure. Implicated mechanisms associating rearrangement of the gastrointestinal tract with these metabolic outcomes include central appetite control, release of gut peptides, change in microbiota and bile acids. However, the exact combination and timing of signals remain largely unknown. In this review, we survey recent research investigating these mechanisms, and seek to provide insights on unanswered questions over how weight loss is achieved following bariatric surgery which may eventually lead to safer, nonsurgical weight-loss interventions or combinations of medications with surgery.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wout Verbeure ◽  
Harry van Goor ◽  
Hideki Mori ◽  
André P. van Beek ◽  
Jan Tack ◽  
...  

Although gasotransmitters nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) receive a bad connotation; in low concentrations these play a major governing role in local and systemic blood flow, stomach acid release, smooth muscles relaxations, anti-inflammatory behavior, protective effect and more. Many of these physiological processes are upstream regulated by gut peptides, for instance gastrin, cholecystokinin, secretin, motilin, ghrelin, glucagon-like peptide 1 and 2. The relationship between gasotransmitters and gut hormones is poorly understood. In this review, we discuss the role of NO, CO and H2S on gut peptide release and functioning, and whether manipulation by gasotransmitter substrates or specific blockers leads to physiological alterations.


Author(s):  
Sarah H. Mhaibes ◽  
Najwan K. Fakree ◽  
Sonia I. Naser

In recent decades, global obesity has increased significantly, causing a major health problem with associated complications and major socioeconomic issues. The central nervous system (CNS), particularly the hypothalamus, regulates food intake through sensing the metabolic signals of peripheral organs and modulating feeding behaviors.  The hypothalamus interacts with other brain regions such as the brain stem to perform these vital functions. The gut plays a crucial role in controlling food consumption and energy homeostasis. The gut releases orexigenic and anorexigenic hormones that interact directly with the CNS or indirectly through vagal afferent neurons. Gastrointestinal peptides (GIP) including cholecystokinin, peptide YY, Nesfatin-1, glucagon-like peptide 1, and oxyntomodulin send satiety signals to the brain and ghrelin transmit hunger signals to the brain. The GIP is essential for the control of food consumption; thus, explain the link between the gastrointestinal tract (GIT) and the brain is important for managing obesity and its associated diseases. This review aimed to explain the role of gut peptides in satiety and hunger control.


Sign in / Sign up

Export Citation Format

Share Document