Coarse-Grid Multiscale Model Reduction Techniques for Flows in Heterogeneous Media and Applications

Author(s):  
Yalchin Efendiev ◽  
Juan Galvis
2017 ◽  
Vol 21 (2) ◽  
pp. 401-422 ◽  
Author(s):  
Eric T. Chung ◽  
Yalchin Efendiev ◽  
Wing Tat Leung

AbstractOffline computation is an essential component in most multiscale model reduction techniques. However, there are multiscale problems in which offline procedure is insufficient to give accurate representations of solutions, due to the fact that offline computations are typically performed locally and global information is missing in these offline information. To tackle this difficulty, we develop an online local adaptivity technique for local multiscale model reduction problems. We design new online basis functions within Discontinuous Galerkin method based on local residuals and some optimally estimates. The resulting basis functions are able to capture the solution efficiently and accurately, and are added to the approximation iteratively. Moreover, we show that the iterative procedure is convergent with a rate independent of physical scales if the initial space is chosen carefully. Our analysis also gives a guideline on how to choose the initial space. We present some numerical examples to show the performance of the proposed method.


2012 ◽  
Vol 231 (24) ◽  
pp. 8100-8113 ◽  
Author(s):  
Yalchin Efendiev ◽  
Juan Galvis ◽  
Eduardo Gildin

2017 ◽  
Vol 12 (4) ◽  
pp. 619-642 ◽  
Author(s):  
Eric Chung ◽  
◽  
Yalchin Efendiev ◽  
Ke Shi ◽  
Shuai Ye ◽  
...  

Author(s):  
Loucas S. Louca ◽  
Jeffrey L. Stein ◽  
Gregory M. Hulbert

In recent years, algorithms have been developed to help automate the production of dynamic system models. Part of this effort has been the development of algorithms that use modeling metrics for generating minimum complexity models with realization preserving structure and parameters. Existing algorithms, add or remove ideal compliant elements from a model, and consequently do not equally emphasize the contribution of the other fundamental physical phenomena, i.e., ideal inertial or resistive elements, to the overall system behavior. Furthermore, these algorithms have only been developed for linear or linearized models, leaving the automated production of models of nonlinear systems unresolved. Other model reduction techniques suffer from similar limitations due to linearity or the requirement that the reduced models be realization preserving. This paper presents a new modeling metric, activity, which is based on energy. This metric is used to order the importance of all energy elements in a system model. The ranking of the energy elements provides the relative importance of the model parameters and this information is used as a basis to reduce the size of the model and as a type of parameter sensitivity information for system design. The metric is implemented in an automated modeling algorithm called model order reduction algorithm (MORA) that can automatically generate a hierarchical series of reduced models that are realization preserving based on choosing the energy threshold below which energy elements are not included in the model. Finally, MORA is applied to a nonlinear quarter car model to illustrate that energy elements with low activity can be eliminated from the model resulting in a reduced order model, with physically meaningful parameters, which also accurately predicts the behavior of the full model. The activity metric appears to be a valuable metric for automating the reduction of nonlinear system models—providing in the process models that provide better insight and may be more numerically efficient.


2016 ◽  
Vol 28 (14) ◽  
pp. 1886-1904 ◽  
Author(s):  
Vijaya VN Sriram Malladi ◽  
Mohammad I Albakri ◽  
Serkan Gugercin ◽  
Pablo A Tarazaga

A finite element (FE) model simulates an unconstrained aluminum thin plate to which four macro-fiber composites are bonded. This plate model is experimentally validated for single and multiple inputs. While a single input excitation results in the frequency response functions and operational deflection shapes, two input excitations under prescribed conditions result in tailored traveling waves. The emphasis of this article is the application of projection-based model reduction techniques to scale-down the large-scale FE plate model. Four model reduction techniques are applied and their performances are studied. This article also discusses the stability issues associated with the rigid-body modes. Furthermore, the reduced-order models are utilized to simulate the steady-state frequency and time response of the plate. The results are in agreement with the experimental and the full-scale FE model results.


Sign in / Sign up

Export Citation Format

Share Document