Energy-Based Model Reduction Methodology for Automated Modeling

Author(s):  
Loucas S. Louca ◽  
Jeffrey L. Stein ◽  
Gregory M. Hulbert

In recent years, algorithms have been developed to help automate the production of dynamic system models. Part of this effort has been the development of algorithms that use modeling metrics for generating minimum complexity models with realization preserving structure and parameters. Existing algorithms, add or remove ideal compliant elements from a model, and consequently do not equally emphasize the contribution of the other fundamental physical phenomena, i.e., ideal inertial or resistive elements, to the overall system behavior. Furthermore, these algorithms have only been developed for linear or linearized models, leaving the automated production of models of nonlinear systems unresolved. Other model reduction techniques suffer from similar limitations due to linearity or the requirement that the reduced models be realization preserving. This paper presents a new modeling metric, activity, which is based on energy. This metric is used to order the importance of all energy elements in a system model. The ranking of the energy elements provides the relative importance of the model parameters and this information is used as a basis to reduce the size of the model and as a type of parameter sensitivity information for system design. The metric is implemented in an automated modeling algorithm called model order reduction algorithm (MORA) that can automatically generate a hierarchical series of reduced models that are realization preserving based on choosing the energy threshold below which energy elements are not included in the model. Finally, MORA is applied to a nonlinear quarter car model to illustrate that energy elements with low activity can be eliminated from the model resulting in a reduced order model, with physically meaningful parameters, which also accurately predicts the behavior of the full model. The activity metric appears to be a valuable metric for automating the reduction of nonlinear system models—providing in the process models that provide better insight and may be more numerically efficient.

2009 ◽  
Vol 7 ◽  
pp. 113-118
Author(s):  
S. Ludwig ◽  
W. Mathis

Abstract. In modeling of distributed systems with distributed sources large networks with RLC-elements and independent sources arise. This high complexity leads to a high effort in simulations. Therefore model reduction can be used to reduce these networks, preserving the behavior at the observed nodes in the networks. For the reduction of networks with a large number of independent sources only a weak reduction is enabled with standard model reduction techniques. In this paper an efficient reduction of networks with a large number of sources with piece-wise-linear waveforms is presented, using the decomposition of piece-wise-linear functions. With the proposed method a higher reduction of the network and/or a higher accuracy can be achieved with model reduction. The validity and efficiency of the proposed method is shown by reducing a RCI-Grid model.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Trenton M. Ricks ◽  
Thomas E. Lacy ◽  
Brett A. Bednarcyk ◽  
Annika Robens-Radermacher ◽  
Evan J. Pineda ◽  
...  

The High-Fidelity Generalized Method of Cells (HFGMC) is one technique, distinct from traditional finite-element approaches, for accurately simulating nonlinear composite material behavior. In this work, the HFGMC global system of equations for doubly periodic repeating unit cells with nonlinear constituents has been reduced in size through the novel application of a Petrov-Galerkin Proper Orthogonal Decomposition order-reduction scheme in order to improve its computational efficiency. Order-reduced models of an E-glass/Nylon 12 composite led to a 4.8–6.3x speedup in the equation assembly/solution runtime while maintaining model accuracy. This corresponded to a 21–38% reduction in total runtime. The significant difference in assembly/solution and total runtimes was attributed to the evaluation of integration point inelastic field quantities; this step was identical between the unreduced and order-reduced models. Nonetheless, order-reduced techniques offer the potential to significantly improve the computational efficiency of multiscale calculations.


2016 ◽  
Vol 28 (14) ◽  
pp. 1886-1904 ◽  
Author(s):  
Vijaya VN Sriram Malladi ◽  
Mohammad I Albakri ◽  
Serkan Gugercin ◽  
Pablo A Tarazaga

A finite element (FE) model simulates an unconstrained aluminum thin plate to which four macro-fiber composites are bonded. This plate model is experimentally validated for single and multiple inputs. While a single input excitation results in the frequency response functions and operational deflection shapes, two input excitations under prescribed conditions result in tailored traveling waves. The emphasis of this article is the application of projection-based model reduction techniques to scale-down the large-scale FE plate model. Four model reduction techniques are applied and their performances are studied. This article also discusses the stability issues associated with the rigid-body modes. Furthermore, the reduced-order models are utilized to simulate the steady-state frequency and time response of the plate. The results are in agreement with the experimental and the full-scale FE model results.


Sign in / Sign up

Export Citation Format

Share Document