A New Type of Adaptive Neural Network Fuzzy Controller in the Double Inverted Pendulum System

Author(s):  
Suying Zhang ◽  
Ran An ◽  
Shuman Shao
2012 ◽  
Vol 268-270 ◽  
pp. 1371-1375
Author(s):  
Hao Yu

Inverted pendulum on a cart poses a challenging control problem. It seems to have been one of attractive tools for testing linear and nonlinear control laws. In this paper, we adopt PID and the adaptive neural network based fuzzy inference method to control the inverted pendulum, combined the fuzzy control into the neural control. This method can improve the capability of the fuzzy controller through learning the data of PID controller to train the fuzzy controller. When the model parameters were changed, the adaptive neural network based fuzzy inference system had good adopt ability to anti-interfere. The cart can go to the destine position exactly.


2013 ◽  
Vol 765-767 ◽  
pp. 2004-2007
Author(s):  
Su Ying Zhang ◽  
Ying Wang ◽  
Jie Liu ◽  
Xiao Xue Zhao

Double inverted pendulum system is nonlinear and unstable. Fuzzy control uses some expert's experience knowledge and learns approximate reasoning algorithm. For it does not depend on the mathematical model of controlled object, it has been widely used for years. In practical engineering applications, most systems are nonlinear time-varying parameter systems. As the fuzzy control theory lacks of on-line self-learning and adaptive ability, it can not control the controlled object effectively. In order to compensate for these defects, it introduced adaptive, self-organizing, self-learning functions of neural network algorithm. We called it adaptive neural network fuzzy inference system (ANFIS). ANFIS not only takes advantage of the fuzzy control theory of abstract ability, the nonlinear processing ability, but also makes use of the autonomous learning ability of neural network, the arbitrary function approximation ability. The controller was applied to double inverted pendulum system and the simulation results showed that this method can effectively control the double inverted pendulum system.


Author(s):  
Tuna Balkan ◽  
Mehmet Emin Ari

Abstract An inverted pendulum system has been designed and constructed as a physical model of inherently unstable mechanical systems. The vertical upright position of a pendulum is controlled by changing the horizontal position of a cart to which the pendulum is hinged. The stability of the system has been investigated when a fuzzy controller is used to produce the control signal, while making a single measurement. It has been shown that by using simple fuzzy rules to allow real time computation with a single angular position measurement, the system can not be made absolutely stable. However, the stability and performance of the system have been considerably improved by shrinking the membership functions of angular position, computed angular velocity and control signal when inverted pendulum is very close to the vertical upright position.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Boutaina Elkinany ◽  
Mohammed Alfidi ◽  
Redouane Chaibi ◽  
Zakaria Chalh

This article provides a representation of the double inverted pendulum system that is shaped and regulated in response to torque application at the top rather than the bottom of the pendulum, given that most researchers have controlled the double inverted pendulum based on the lower part or the base. To achieve this objective, we designed a dynamic Lagrangian conceptualization of the double inverted pendulum and a state feedback representation based on the simple convex polytypic transformation. Finally, we used the fuzzy state feedback approach to linearize the mathematical nonlinear model and to develop a fuzzy controller H ∞ , given its great ability to simplify nonlinear systems in order to reduce the error rate and to increase precision. In our virtual conceptualization of the inverted pendulum, we used MATLAB software to simulate the movement of the system before applying a command on the upper part of the system to check its stability. Concerning the nonlinearities of the system, we have found a state feedback fuzzy control approach. Overall, the simulation results have shown that the fuzzy state feedback model is very efficient and flexible as it can be modified in different positions.


Sign in / Sign up

Export Citation Format

Share Document